Surfaces of minimal degree of tame representation type and mutations of Cohen–Macaulay modules

Abstract : We provide two examples of smooth projective surfaces of tame CM type, by showing that the parameter space of isomorphism classes of indecomposable ACM bundles with fixed rank and determinant on a rational quartic scroll in IP5 is either a single point or a projective line. These turn out to be the only smooth projective ACM varieties of tame CM type besides elliptic curves, [1]. For surfaces of minimal degree and wild CM type, we classify rigid Ulrich bundles as Fibonacci extensions. For IF0 and IF1, embedded as quintic or sextic scrolls, a complete classification of rigid ACM bundles is given.
Type de document :
Article dans une revue
Advances in Mathematics, Elsevier, 2017, 310, pp.663 - 695. 〈10.1016/j.aim.2017.02.007〉
Liste complète des métadonnées

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01557908
Contributeur : Imb - Université de Bourgogne <>
Soumis le : jeudi 6 juillet 2017 - 16:03:33
Dernière modification le : jeudi 11 janvier 2018 - 06:12:20

Identifiants

Collections

Citation

Daniele Faenzi, Francesco Malaspina. Surfaces of minimal degree of tame representation type and mutations of Cohen–Macaulay modules. Advances in Mathematics, Elsevier, 2017, 310, pp.663 - 695. 〈10.1016/j.aim.2017.02.007〉. 〈hal-01557908〉

Partager

Métriques

Consultations de la notice

56