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Rear-end vision-based collision detection system for
motorcyclists
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Abstract. In many countries, the motorcyclist fatality rate is much higher than that of other vehicle drivers. 
Among many other factors, motorcycle rear-end collisions are also contributing to these biker fatalities. To 
increase the safety of motorcyclists and minimize their road fatalities, this paper introduces a vision-based 
rear-end collision detection system. The binary road detection scheme contributes significantly to reduce the 
negative false detections and helps to achieve reliable results even though shadows and different lane markers 
are present on the road. The methodology is based on Harris corner detection and Hough transform. To validate 
this methodology, two types of dataset are used: (1) self-recorded datasets (obtained by placing a camera at the 
rear end of a motorcycle) and (2) online datasets (recorded by placing a camera at the front of a car). This method 
achieved 95.1% accuracy for the self-recorded dataset and gives reliable results for the rear-end vehicle 
detections under different road scenarios. This technique also performs better for the online car datasets. 
The proposed technique’s high detection accuracy using a monocular vision camera coupled with its low 
computational complexity makes it a suitable candidate for a motorbike rear-end collision detection system.

Keywords: motorcycle accidents; road detection; Sobel edge detection; Hough transform; collision detection system.

1 Introduction

According to the motorcycle industry, there are 313 million
motorcycles in the world, of which 77% are in Asia, 5%
are in Latin America, and 2% are in North America.1 The
average number of motorcycles per thousand people in
most of the Asian cities is ∼196,2 whereas Europe and
North America contain only 16% of the world motorcycle
fleet.1 Motorcyclists have higher risks of fatalities compared
with any other types of vehicle drivers.3 It is estimated that
more than 180,000 motorcyclists died worldwide annually as
a result of road crashes.1 However, motorcyclist safety is
a major issue in most Asian countries. In Malaysia, more
than 50% of road fatalities are due to motorcyclists.4

Similarly, motorcyclists are responsible for 80% of road
fatalities in Vietnam, 70% in Thailand, 61% in Indonesia,
and 58% in Cambodia.4 In other countries, the situation is
not as alarming, but it still represents a major concern: motor-
cycle-related fatalities are 13% in New Zealand5 and 14%
in the former EU15 (i.e., the 15 member nations of the
EU prior to 2004).6

Frontal and rear-end collisions that highly contribute to
motorcyclist fatalities are mostly recorded on motorways
and primary roads. Most of these fatalities are reported on
straight road sections.4 Many factors are involved in motor-
cycle accidents, among which are excessive speed, driving
under the influence of alcohol, ignorance of the route, and
loss of control.7,8

To increase the safety of the motorcyclists and minimize
their fatalities, different techniques have been proposed.

They can be divided into two major categories: (1) passive
safety and (2) active safety. Passive safety techniques aim to
reduce injuries, whereas active techniques help to avoid
accidents from occurring in the first place. Passive safety
covers the use of helmets,9,10 special cloths,11,12 air bags,13

etc. Active safety covers electronic stability control,14,15 anti-
lock braking system,16 advance collision warning (ACW)
systems for motorcycles,17–19 etc. These ACWactive systems
give early warnings to the motorcyclists about potential
dangers.20,21

As far as active safety systems for cars are concerned,
there are many techniques developed for collision
detections.22–28 These techniques rely on global positioning
system (GPS),22 radar,23 laser scanners,24 intervehicle commu-
nications,25 ultrasonic-26 and camera-based approaches,27–28

etc. However, there are very few documented papers or sys-
tems on collision detections or collision avoidance systems
for motorcyclists.

For example, in Ref. 17, different techniques aiming at
warning motorcyclists about potential collisions are dis-
cussed; nevertheless, the development and accuracy of
these systems are not fully established. In Ref. 18, informa-
tion about the “dangerousness of curves ahead” is presented
to the motorcyclist to avoid possible accidents. The given
technique relies on the GPS to estimate the motorcycle posi-
tion and to estimate the approaching curve; the technique
is not sufficiently proven as it has only been tested in a
laboratory environment by means of a simulator. Next, the
authors of Ref. 19 proposed a vision-based collision warning
system for motorcycle; a mobile phone camera, mounted on
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the front side of a motorcycle, was used to detect the frontal
vehicles, and the GPS was used to estimate the distance.

Images and videos provide rich data sources from which
additional information and context can be surmised.
Cameras provide a wide field of view, allowing for the detec-
tion and tracking of (moving) objects across multiple lanes.
In general, vehicle detections using cameras can be classified
as stereo and monocular.28 Stereo-based methods require two
images, leading to the increase in system complexities and
costs. In contrast, monocular vision-based vehicle detections
have mirrored advances in computer vision, machine learn-
ing, and pattern recognition.

For a monocular-based system, the determination of
vehicle locations is performed by analyzing the vehicle’s
motion or appearance.28 In a motion-based technique, an
optical flow method is used to detect the vehicles.29,30

Motion-based methods are effective for detecting moving
objects; however, they are computationally intensive and
require analysis of several frames before an object can be
detected. They are also sensitive to camera movement and
may fail to detect objects with slow relative motion.31 As

such, motion-based techniques are less commonly used
for vehicle detections.

On the other hand, appearance-based detection techniques
detect vehicles based on shadow underneath the vehicles,32

color,33 symmetry,27,31 texture,34 lights,35 and edges.36

In this paper, a rear-end vision-based collision detection
system has been proposed for motorcyclists. This system
detects incoming vehicles from the rear-end using a single
camera; it has been tested on different road scenarios and
on available online datasets to evaluate its performances.

2 Related Work

Recent related works for vehicle detections are given in
Table 1. This table covers the detection type and the dataset
properties; it also highlights some results through metrics,
such as accuracy and true positive rate (TPR), and it further
provides the limitation of these techniques. In Table 1, the
“detection type” column defines whether the technique is
applied either for the front or rear-end vehicle detection.
The “dataset” column provides information related to the

Table 1 Some related studies for vehicle detections.

Author/year
Detection

type Dataset TPR (%) Accuracy (%)

Features/feature
extraction

method/classifier Limitations

Arenado
et al.32

Front 3400 images (for
vehicle detection)

96.71, 98.41,
97.28, 96.80

97.60, 98.80,
97.90, 96.75

Shadow underneath
the vehicle and
horizontal edges

To detect the front vehicle license
plate, both vehicles should be
very close to each other. This can
be dangerous under high-speed
scenario. This technique is very
slow and can process only four
frames in 1 s.

Liu et al.37 Rear 5725 images 92.50, 94.80,
93.70, 89.10,
(RA1 results)

— Haar wavelet/SVM The optimization for this technique
was not performed to satisfy
the real-time requirement.

O’Malley
et al.38

Rear 44 video clips,
each contains at
least one vehicle

92.86 — Headlamp pairs
detection

The technique is only effective
at night or when the light
condition was very low.

Wu et al.39 Left-sided
overtaking
vehicles

9 video sequences
used to capture
the images

87.00, 80.00,
84.00, 95.00,
84.00, 81.00,
88.00, 89.00,

62.00

— Histogram of gradient
(HOG) for vehicle
detection/neuro-fuzzy
network for distance
measurement

The technique is only effective to
detect vehicles in an adjacent lane.

Lee et al.40 Front 1000 images 92.09 — HOG/SVM If the system fails to select the
shadow area, the vehicle detection
is performed using the HOG feature
of the whole image; this slows down
the detection process.

Men and
Dai41

Front 1 video — — HOG for vehicle license
plate localization and using
lamp shape information

To detect the front vehicle license
plate, both vehicles should be very
close to each other and this can
be dangerous under high-speed
scenario.

Kim et al.42 Front 3 videos 86.75, 61.80,
92.73

— Haar-like features and
AdaBoost/SVM

Bad illumination conditions or
rainy weather conditions can
make the color of road pixels dark
and cause this method to fail.
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videos, the number of images, or the type of vehicles
involved in the experiments.

In Ref. 32, a single camera was used to detect front
vehicles. The technique uses a combination of two features
namely the shadow underneath the vehicle and horizontal
edges for vehicle detection; the analysis of consecutive
frames is used to calculate the relative speed of the detected
car. Unavoidably, to detect the front vehicle license plate,
both vehicles should be very close to each other, imposing
a constraint that could be dangerous under a high-speed sce-
nario. As reported, this technique is quite slow, as it proc-
esses only four frames per second.

The authors of Ref. 37 presented a monocular vision-
based rear vehicle detection and tracking system for car driv-
ers. The camera was positioned looking backward out of the
rear windshield. The application was for the detection of the
front parts of the approaching vehicles to assist the driver in
lane changing. Symmetry and edge operators were used to
generate the region of interest (ROI). Subsequently, vehicles
were detected using Haar wavelet features that were later fed
to a support vector machine (SVM) classifier.

In Ref. 38, a rear-end vehicle detection under low light
conditions has been proposed. The technique identifies the
vehicle headlamp pairs using a region growing threshold
and a cross-correlation bilateral symmetry analysis method.
This technique performs a perspective transformation to cor-
rect the distortion and ensure consistent detection perfor-
mance throughout all road manoeuvers. Finally, a Kalman
filter is used for tracking purposes. Unfortunately, this

technique is only effective at night or when the light condi-
tion is very low.

The authors of Ref. 39 detected vehicles in adjacent lanes
by placing a camera at the left side rear-view mirror. The
camera captures the images in the adjacent lane to detect
vehicles. This technique uses a neuro-fuzzy network to
detect the vehicles. The training of the neuro-fuzzy network
plays an important role in the detection process.

In Ref. 40, a monocular vision-based technique has been
proposed to detect front vehicles. Histograms of oriented
gradients (HOG) have been used to extract the features,
and SVM has been used for classification. Shadows under-
neath the vehicles have been used as a feature for vehicle
detections. However, if the system fails to select the shadow
area, the vehicle detection is then performed using HOG fea-
tures, which result in larger amounts of calculations and
slower processing speed.

In Ref. 41, license plate detection has been used to iden-
tify front vehicles. This technique first detects the license
plate of the front vehicle and verifies it by using the

Fig. 1 Sony action cam mounted at the rear end of motorcycle.

Table 2 Datasets used to evaluate our technique.

Dataset Dataset description
Source of
recording

Number
of frames

Self-
recorded

Multiple vehicles, various
traffic conditions, different
road scenarios, various
light conditions, recorded
by placing camera at rear
end of motorcycle.

Motorcycle 5000

Laboratory
for Intelligent
and Safe
Automobiles
(LISA)-
dense43

Multiple vehicles, dense
traffic, daytime, highway,
recorded by placing
camera at the front of
the car.

Car 1600

LISA-
urban43

Single vehicle, urban
scenario, cloudy morning,
recorded by placing camera
at the front of the car.

Car 300

LISA-
sunny43

Multiple vehicles, medium
traffic, daytime, highway,
recorded by placing camera
at the front of the car.

Car 300

iROADS-
daylight44

Multiple vehicles, low traffic,
daytime, highway, recorded
by placing camera at the
front of the car.

Car 903

iROADS-
tunnel44

Very low traffic, inside tunnel,
recorded by placing camera
at the front of the car.

Car 307a

Source-245 Multiple vehicles, medium
traffic, daytime, highway,
recorded by placing camera
at the front of the car.

Car 960

Total 9370

aThere are 307 images in iROADS-Tunnel dataset available at
Ref. 47.
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geometrical characteristics of the license plate. Afterward,
the rear lamps of the vehicle are detected across the license
plate for the verification of the vehicle detection. However, to
detect the front vehicle license plate, both vehicles should be
close to each other, a situation that can be dangerous under
a high-speed scenario.

The authors of Ref. 42 used the shadow underneath the
vehicle to detect the frontal vehicles. Haar-like features with
AdaBoost was used to train a shadow detector offline, and
SVM has been used for the classification.

3 Data Set

In this research, a Sony action cam was installed at the rear-
end of a motorcycle (Yamaha, 115cc) to acquire the dataset

Fig. 2 Flow chart to detect the vehicles.

Fig. 3 Flow chart for the detection of binary road region. Fig. 4 Location of the selected patches in frame.
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Fig. 5 Different lane marks presented on the road using self-recorded dataset.

Fig. 6 Binary road detection: (a) self-recorded dataset with multiple vehicle footprints, (b) self-recorded
dataset with truck at lane markers, (c) LISA-dense (frame 735), (d) LISA-urban (frame 13), (e) LISA-
sunny (frame 104), (f) source-2 (frame 140), (g) iROADS-daylight, and (h) iROADS-tunnel.
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as shown in Fig. 1. The camera was mounted in a shocked
proof casing to minimize any vibration effects. The video
datasets were recorded in “.avi” format at 30 frames per sec-
ond and at a resolution of 600 × 800 pixels. A total of 5000
frames containing 120 vehicles were used for testing. The
video datasets were recorded in different road scenarios hav-
ing different light conditions. During the video recordings,
the driving speed of the motorcycle varied from 40 to
80 km∕h. The datasets were recorded along Ipoh–Lumut
highway, Perak, Malaysia and inside Universiti Teknologi
PETRONAS (UTP), Malaysia.

Due to the limitations of online motorcycle datasets, the
proposed technique has also been validated using online car
datasets.43–45 The “source-2” dataset is available at Ref. 46.
The details of the datasets are given in Table 2.

4 Vehicle Detection Technique

The steps leading to the algorithm development are shown
in Fig. 2.

First, the video frame is transformed into gray scale to
enhance the computation performance. Afterward, the ROI
is computed. To get the ROI, a fixed area from the top of
every grayscale frame is excluded to remove the sky and

other unwanted regions. Next, the left and right boundaries
of the ROI image are kept the same as the input frame, as
shown in Fig. 2. After that, binary road region segmentation
and vehicle detections are performed; both approaches will
be explained in the next sections.

4.1 Binary Road Region Detection Technique

The binary road region detection technique is illustrated
in Fig. 3.

To find the binary road region, first and foremost six
square patches have been extracted from the ROI image.
All the selected patches have the same size and their loca-
tions are fixed for each ROI image. In our case, these patches
are selected near the bottom of the ROI image, which is adja-
cent to the motorcycle. At that place, there is a low proba-
bility of vehicle presence and a high probability that it
contains only the road region. The locations of these user-
defined patches are shown in Fig. 4.

For the first ROI image or the frame, the average gray-
scale value for all the six patches has been calculated.
This average grayscale value named as a mean value (MV)
is also saved as a previous mean value (PMV). Next, this

Fig. 7 Sobel edge detection with Otsu threshold: (a) multiple vehicles from the self-recorded dataset,
(b) truck at lane markers from self-recorded dataset, (c) LISA-dense (frame 735), (d) LISA-urban (frame
13), (e) LISA-sunny (frame 104), (f) source-2 (frame 140), (g) iROADS-daylight, and (h) iROADS-tunnel.
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value is used as a threshold to convert the ROI image into
a binary road image. The usage of the PMV is explained
below.

Assume that MV, PMV, and MðiÞ are the corresponding
MV, PMV, and the average grayscale value of the individual
patch, where i ¼ 1;2; 3; : : : ; 6; the MVand PMV for the first
image can be calculated as

EQ-TARGET;temp:intralink-;e001;63;675MV ¼ PMV ¼

P

MðiÞ

6
: (1)

Most of the roads have white lines or some lane marks.
These white lines or lane marks are normally used to guide
the motorcyclists and other vehicle drivers into an appropri-
ate direction, as shown in Fig. 5.

It should be noted that it may be possible for some of
these six patches to contain a white line or a lane marker
region affecting (i.e., increasing) the MV of these patches.
Therefore, only patches having a mean gray level lower
than an empirical threshold are kept, and the affected
one(s) is/are discarded for the remaining frames.

The threshold value for the patch selection is given as

EQ-TARGET;temp:intralink-;e002;63;516MðiÞ ≤ 100: (2)

Then, as presented in Fig. 3, two possible scenarios arise:
(1) one or more patches contain a road region and (2) no
patch contains a road region.

4.1.1 One or more patches containing road region

If one or more patches contain the road regions, the average
grayscale values of these patches are used to calculate the
MV. This MV is also stored as a PMVand is used to convert
that ROI image into a binary image.

For example, if Mð1Þ, Mð2Þ, and Mð6Þ are the average
grayscale values of the patches that contain the road region
[i.e., Mð1Þ, Mð2Þ, and Mð6Þ ≤ 100 while Mð3Þ, Mð4Þ, and
Mð5Þ > 100], then MV and PMV are computed as

EQ-TARGET;temp:intralink-;e003;326;604MV ¼ PMV ¼
Mð1Þ þMð2Þ þMð6Þ

3
: (3)

4.1.2 No patch containing road region

If no patch contains a road region [i.e.,
Mð1Þ;Mð2Þ; : : : ;Mð6Þ > 100], then the PMV from the pre-
vious frame is used as the MV to convert the current ROI
image into a binary image. From our observation, the binary

Fig. 8 Lane marker free (LMF) image: (a) self-recorded dataset with multiple vehicles footprints, (b) self-
recorded dataset with truck at lane markers, (c) LISA-dense (frame 735), (d) LISA-urban (frame 13),
(e) LISA-sunny (frame 104), (f) source-2 (frame 140), (g) iROADS-daylight, and (h) iROADS-tunnel.
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road detection technique gives reliable results, even when
lane markers are present on the road. Figure 6 shows the
results of the binary road region detection.

From Fig. 6, one can see that the road boundary is clearly
visible and it can help to differentiate between the road
region and the unwanted area.

4.2 Vehicle Detection

To find the vehicle pattern initially, Sobel edge detection48

with Otsu threshold49 has been applied onto the ROI image.
The resultant image consists of the lane markers and vehicle
footprints as shown in Fig. 7. In this figure, the road boun-
daries, vehicles edges, and other object edges are clearly
visible. The edges of the lane markers can also be seen in
the figure. However, the differentiation between vehicle foot-
prints and other objects is still very difficult at this stage.

To minimize false vehicle detections, it is important to
remove the lane markers from the Sobel edge detected
image. This is achieved by subtracting the binary image
from the Sobel edge detected image. By applying this tech-
nique, lane markers are being effectively removed from the

resultant image. The image is referred as lane marker free
(LMF) image, as shown in Fig. 8.

In Fig. 8, vehicle edges and road boundaries are clearly
visible. The lane markers or any other unwanted noise at the
road region have been removed. Therefore, a vehicle foot-
print detection is much easier and simpler at this stage. To
acquire the vehicle footprints, Harris corner detection50 and
Hough transform have been applied to the LMF image. The
results of Harris corner detection are shown in Fig. 9.

Hough transform is used to detect the angular lines, which
further helps in detecting the vehicle footprints and removing
the shadow regions. Assume that h, mh, and ah are the
length, slope, and the angle of the angular line, respectively,
obtained from Hough transform. If (x1; y1) and (x2; y2) are,
respectively, the start and the end points of the angular line,
then the length h, slope mh, and angle ah are calculated as

EQ-TARGET;temp:intralink-;e004;326;576h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx2 − x1Þ
2 þ ðy2 − y1Þ

2

q

; (4)

EQ-TARGET;temp:intralink-;e005;326;538mh ¼
y2 − y1

x2 − x1
; (5)

Fig. 9 Harris corner detection: (a) incoming vehicles from self-recorded dataset, (b) truck from self-
recorded dataset, (c) LISA-dense (frame 735), (d) LISA-urban (frame 13), (e) LISA-sunny (frame
104), (f) source-2 (frame 140), (g) iROADS-daylight, and (h) iROADS-tunnel.
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EQ-TARGET;temp:intralink-;e006;63;752ah ¼ tan−1ðmhÞ: (6)

In our technique, the angular range selected for these lines
is given as

EQ-TARGET;temp:intralink-;e007;63;71185 deg ≤ ah ≤ 92 deg : (7)

It may be possible that the selected lines still contain the
shadow edges. As the shadow edges are bigger than the
vehicle edges and the camera is fixed at the rear end of
the motorcycle, a threshold condition is applied on these
lines to get the vehicle footprints. The threshold condition
for the length (h) selection of these lines is given as

EQ-TARGET;temp:intralink-;e008;63;61410 pixels ≤ h ≤ 50 pixels: (8)

The selected lines are shown in Fig. 10.
For the vehicle footprint validation, a comparison of the

selected lines and Harris corner detection is performed. For
this comparison, initially, an image is divided into small
patches. In all patches, the slopes of the selected lines are
computed. For example, in any patch, if (xp; yp) and (xq; yq)

are the starting and the end points of the selected line, respec-
tively, then the slope mh of this line is calculated as

EQ-TARGET;temp:intralink-;e009;326;730mh ¼
yq − yp

xq − xp
: (9)

If (xr; yr) is the position of the corner detected by the
Harris corner detection technique, then its slope m and dis-
tance d with respect to the initial point of the selected line is
given as

EQ-TARGET;temp:intralink-;e010;326;643m ¼
yr − yp

xr − xp
; (10)

EQ-TARGET;temp:intralink-;e011;326;602d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxr − xpÞ
2 þ ðyr − ypÞ

2

q

: (11)

These three parametersmh,m, and d permit us to assess if
the selected line is passing through the Harris corner land-
mark or if it is very close to it (up to four pixels); in that
case, it is selected as vehicle footprints. If the selected
line intersects the Harris corner, then the values of both

Fig. 10 Selected lines plotted on ROI images: (a) incoming vehicles from self-recorded dataset, (b) truck
on lane markers from self-recorded dataset, (c) LISA-dense (frame 735), (d) LISA-urban (frame 13),
(e) LISA-sunny (frame 104), (f) source-2 (frame 140), (g) iROADS-daylight, and (h) iROADS-tunnel.
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slops (i.e., mh and m) will be equal. Similarly, the value of d
provided the information that how far is the Harris corner
from the initial point of the selected line.

For the proposed technique, the size of six selected
patches for ROI, their locations, and the values of other
parameters such as MðiÞ, ah, and h are kept the same for
all types of road scenarios and light conditions. The same
values are used for the self-recorded and online datasets.
Each dataset has different frame sizes and a different place-
ment of the camera; therefore, the fixed area that has been
excluded from the top of every grayscale frame varies for
each dataset.

Last, the binary road image is used to make a decision
whether the selected lines represent a vehicle or not.
Indeed, the boundaries of the road are clearly black, which
enables us to mark the road edges and allows us to discard
the lines appearing outside of these marked edges. The
remaining lines contain the vehicles footprint.

5 Experimental Results

The given technique was implemented on the Intel® core™

i7-4770 CPU (3.4 GHz processor dual core, installed
memory 16GB). Our technique was investigated in C++
using OpenCV. Our method was evaluated on the self-
recorded dataset as well as on the online datasets43–45 for
comparison purposes. The results show that our technique
works perfectly well for the motorcycle (using the self-
recorded dataset) as well as for the online car datasets.
It can detect both incoming and outgoing vehicles perfectly
from the rear-end on single and multiple lanes. The

technique is also capable of detecting parked vehicles on
the roadside. Some of the results from the self-recorded data-
set are shown in Fig. 11.

In Fig. 11, the detection of rear-end vehicles is shown
for the self-recorded dataset. In this figure, one can see
the detection of the parked cars along the roadside as well
as correct detection of truck, even when lane markers are
present on the road.

Next, Fig. 12 shows the detection of vehicles from the
online dataset.43–45 The proposed technique can detect
the vehicles even in the presence of shadow regions. As
expected, it detects the vehicles up to a certain distance
(determined by our various thresholds) as shown in Fig. 12(d).

Sometimes, the method fails to detect some vehicles and
generate false alarms as shown in Fig. 13. This may occur
due to the road structure as shown in Figs. 13(a), 13(b), 13(e),
and 13(f). In Fig. 13(a), the road is in a tilted position;
therefore, the horizontal lines obtained from the Hough trans-
form did not fit the selected line criteria, and the proposed
technique missed that vehicle. In Fig. 13(b), the area below
the road barrier is detected as a road region and this leads
to the false detection, as a vehicle. Similarly, in Fig. 13(d),
the footpath around the right side of the road is detected as
a road region; therefore, the object on it is detected as a
vehicle. From Fig. 13(f), we can see that the road is damaged
and contains many horizontal cracks, which sometimes
are detected as vehicles, leading to false detections. In
Fig. 13(c), the car in the middle lane is occluded by the
shadow created by other cars and could not be possibly
detected. On the whole, this technique still obtained very
less false detections.

Fig. 11 Vehicle detection from self-recorded dataset: (a) vehicles are parked on the roadside, (b) moving
vehicle in a single lane, (c) vehicle detection on a road with multiple lanes, and (d) truck detection at lane
markers.
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Comparison of the proposed technique with the existing
state-of-the-art rear-view-based vehicle detection methods is
given in Table 3. For the given technique, accuracy, TPR, and
false detection rate (FDR) are given as

EQ-TARGET;temp:intralink-;e012;63;260Accuracyð%Þ ¼
TPþ TN

TPþ TNþ FPþ FN
× 100; (12)

EQ-TARGET;temp:intralink-;e013;63;213TPRð%Þ ¼
TP

TPþ FN
× 100; (13)

EQ-TARGET;temp:intralink-;e014;63;175FDRð%Þ ¼
FP

FPþ TP
× 100; (14)

where TP, TN, FP, and FN refer to true positives, true neg-
atives, false positives, and false negatives, respectively. Also
for each technique, an average frame rate processing time has
been computed, and it is equal to the average number of
frames processed in 1 s.

From Table 3, one can see that for the self-recorded data-
set, the accuracy is 95.1%. When comparing with the
existing state-of-the-art works, our technique shows improved
performances on all the quantitative criteria. The reason for a
better FDR is due to the patch selection method, which ena-
bles to predict an enhanced binary road region. The second
main reason is the length of the selected Hough lines, which
helps to remove the shadow regions.

Our technique achieves a high accuracy for source-2 data-
set with respect to the work of Choi.45 For LISA-dense and
LISA-urban datasets, our method achieves higher TPR as
compared with the recent research work of Sivaraman43

and Satzoda and Trivedi.51 For LISA-Sunny dataset, our
technique provides a TPR that is a bit less as compared with
the techniques of Sivaraman45 and Satzoda and Trivedi.51

However, the FDR of our method on LISA-sunny dataset
is less compared with the existing work. For iROADS-day-
light dataset, our technique’s TPR and FDR are lower as
compared with the work of Satzoda and Trivedi,51 but a
higher frame rate is achieved. Satzoda’s51 technique per-
forms better under sun light condition, whereas our tech-
nique performs good for all light conditions and traffic

Fig. 12 Vehicle detection from online datasets: (a) LISA-dense (frame 735), (b) LISA-urban (frame 13),
(c) LISA-sunny (frame 104), (d) source-2 (frame 140), (e) iROADS-daylight, and (f) iROADS-tunnel.
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scenarios. The proposed work achieves higher frame rate for
the self-recorded dataset and for the online datasets as com-
pared to the all existing methods.43,45,51 The rapid vehicle
detection gives more time to the motorcyclist to take a cor-
rect decision, therefore making it more suitable for motor-
cycle applications.

Due to the use of low level of features (such as Harris edge
detection and the lines computed from Hough transform for
vehicle foot print detections), higher computing performance
has been obtained. The proposed method achieves a higher
accuracy in lesser time, which makes it efficient for motor-
cycle applications.

6 Conclusion

From this work, it can be concluded that the proposed tech-
nique is effective for rear-end vehicle detections for motor-
cycle applications. The method presented in this paper
achieves higher accuracy and better results in different road

scenarios compared with other methods recently published.
The patch selection method for the binary road detection
contributes a lot to reduce the false detections and produce
reliable results, even when shadows or different lane markers
are present on the road. The size selection of the lines, com-
puted from Hough transform, also helps to avoid the shadow
regions and improve the accuracy. It shows a very good per-
formance for the motorcycle using the rear-end dataset as
well as utilizing the online vehicle frontal datasets. The pro-
posed method provides a reliable accuracy, making it more
trustworthy for vehicle applications. It achieved higher
accuracy, TPR, and frame rate for many road scenarios as
compared with the existing state-of-the-art methods. Also, this
technique provides an upright vision-based rear-end collision
detection system for the motorcyclists. It is believed that this
method could help to reduce the motorcyclist fatality rate,
when integrated with vibrational or auditory warning-based
alert systems. These aspects are currently being investigated.

Fig. 13 False vehicle detection: (a) missing vehicle detection in self-recorded dataset, (b) false detection
from self-recorded dataset, (c) LISA-dense (frame 735), (d) LISA-urban (frame 13), (e) LISA-sunny
(frame 104), and (f) source-2 (frame 744).
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