Segmentation and classification of melanoma and benign skin lesions - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Optik - International Journal for Light and Electron Optics Année : 2017

Segmentation and classification of melanoma and benign skin lesions

(1) , (1) , (2, 3) , (4)
1
2
3
4

Résumé

The incidence of malignant melanoma has been increasing worldwide. An efficient noninvasive computer-aided diagnosis (CAD) is seen as a solution to make identification process faster, and accessible to a large population. Such automated system relies on three things: reliable lesion segmentation, pertinent features' extraction and good lesion classifier. In this paper, we propose an automated system that uses an Ant colony based segmentation algorithm, takes into consideration three types of features to describe malignant lesion:geometrical properties, textureand relative colors from which pertinent ones are selected, and uses two classifiers K-Nearest Neighbor (KNN) and Artificial Neural Network (ANN). The objective of this paper is to test the efficiency of the proposed segmentation algorithm, extract most pertinent features that describe melanomas and compare the two classifiers. Our automated system is tested on 172 dermoscopic images where 88 are malignant melanomas and 84 benign lesions. The results of the proposed segmentation algorithm are encouraging as they gave promising results. 12 features seem to be sufficient to detect malignant melanoma. Moreover, ANN gives better results than KNN. (C) 2017 Elsevier GmbH. All rights reserved.
Fichier non déposé

Dates et versions

hal-01577835 , version 1 (28-08-2017)

Identifiants

Citer

Fekrache Dalila, Ameur Zohra, Kasmi Reda, Cherifi Hocine. Segmentation and classification of melanoma and benign skin lesions. Optik - International Journal for Light and Electron Optics, 2017, 140, pp.749 - 761. ⟨10.1016/j.ijleo.2017.04.084⟩. ⟨hal-01577835⟩
161 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More