Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

No need to learn from each other?: Potentials of Knowledge Modeling in Autonomous Vehicle Systems Engineering

Abstract : Engineering autonomous driving functions has become a dramatic challenge in automotive engineering since it is now required to integrate knowledge from multi-disciplinary domains. In this context, the widespread engineering methods are showing their limit since they mainly integrate technological centered point of view. Thus, these new requirements lead naturally to the design of new method for engineering in automotive field. The goal of this paper is to sketch an overview of the possible improvements that Knowledge Modeling and ontologies can bring to Systems Engineering and especially in the case of Autonomous Driving functions.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01588160
Contributeur : Ub_drive Université de Bourgogne <>
Soumis le : vendredi 15 septembre 2017 - 11:18:08
Dernière modification le : mercredi 16 septembre 2020 - 10:42:49

Lien texte intégral

Identifiants

Citation

Ferdinand Schaefer, Daniela Chrenko, Franck Gechter, Alexandre Ravey, Reiner Kriesten. No need to learn from each other?: Potentials of Knowledge Modeling in Autonomous Vehicle Systems Engineering. International Conference on Engineering, Technology & innocation (ICE/ITMC), Jun 2017, Madère, Portugal. ⟨10.1109/ICE.2017.8279921⟩. ⟨hal-01588160⟩

Partager

Métriques

Consultations de la notice

123