Integrability, Quantization and Moduli Spaces of Curves

Abstract : This paper has the purpose of presenting in an organic way a new approach to integrable (1 + 1)-dimensional field systems and their systematic quantization emerging from intersection theory of the moduli space of stable algebraic curves and, in particular, cohomological field theories, Hodge classes and double ramification cycles. This methods are alternative to the traditional Witten-Kontsevich framework and its generalizations by Dubrovin and Zhang and, among other advantages, have the merit of encompassing quantum integrable systems. Most of this material originates from an ongoing collaboration with A. Buryak, B. Dubrovin and J. Guere.
Type de document :
Article dans une revue
Symmetry, Integrability and Geometry : Methods and Applications, National Academy of Science of Ukraine, 2017, 13, pp.060. 〈10.3842/SIGMA.2017.060〉
Liste complète des métadonnées

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01612026
Contributeur : Imb - Université de Bourgogne <>
Soumis le : vendredi 6 octobre 2017 - 13:44:53
Dernière modification le : mardi 3 juillet 2018 - 13:06:02

Lien texte intégral

Identifiants

Collections

Citation

Paolo Rossi. Integrability, Quantization and Moduli Spaces of Curves. Symmetry, Integrability and Geometry : Methods and Applications, National Academy of Science of Ukraine, 2017, 13, pp.060. 〈10.3842/SIGMA.2017.060〉. 〈hal-01612026〉

Partager

Métriques

Consultations de la notice

58