Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Integrability, Quantization and Moduli Spaces of Curves

Abstract : This paper has the purpose of presenting in an organic way a new approach to integrable (1 + 1)-dimensional field systems and their systematic quantization emerging from intersection theory of the moduli space of stable algebraic curves and, in particular, cohomological field theories, Hodge classes and double ramification cycles. This methods are alternative to the traditional Witten-Kontsevich framework and its generalizations by Dubrovin and Zhang and, among other advantages, have the merit of encompassing quantum integrable systems. Most of this material originates from an ongoing collaboration with A. Buryak, B. Dubrovin and J. Guere.
Type de document :
Article dans une revue
Liste complète des métadonnées
Contributeur : Imb - Université de Bourgogne <>
Soumis le : vendredi 6 octobre 2017 - 13:44:53
Dernière modification le : jeudi 28 janvier 2021 - 10:28:03

Lien texte intégral



Paolo Rossi. Integrability, Quantization and Moduli Spaces of Curves. Symmetry, Integrability and Geometry : Methods and Applications, National Academy of Science of Ukraine, 2017, 13, pp.060. ⟨10.3842/SIGMA.2017.060⟩. ⟨hal-01612026⟩



Consultations de la notice