The pure descent statistic on permutations - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Discrete Mathematics Année : 2017

The pure descent statistic on permutations

(1) , (1)
1

Résumé

We introduce a new statistic based on permutation descents which has a distribution given by the Stirling numbers of the first kind, i.e., with the same distribution as for the number of cycles in permutations. We study this statistic on the sets of permutations avoiding one pattern of length three by giving bivariate generating functions. As a consequence, new classes of permutations enumerated by the Motzkin numbers are obtained. Finally, we deduce results about the popularity of the pure descents in all these restricted sets. (C) 2017 Elsevier B.V. All rights reserved.

Dates et versions

hal-01627131 , version 1 (31-10-2017)

Identifiants

Citer

Jean-Luc Baril, Sergey Kirgizov. The pure descent statistic on permutations. Discrete Mathematics, 2017, 340 (10), pp.2550 - 2558. ⟨10.1016/j.disc.2017.06.005⟩. ⟨hal-01627131⟩
86 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More