M. Hoekstra, T. J. Van-berkel, and M. Van-eck, Scavenger receptor BI: a multi-purpose player in cholesterol and steroid metabolism, World J Gastroenterol, pp.16-5916, 2010.

C. H. Han and M. H. Lee, Topology of scavenger receptor class B type I (SR-BI) on brush border membrane, J Vet Sci, vol.3, pp.265-272, 2002.

M. A. Hidalgo, R. Vega, and . Bragado, Localization of the lipid receptors CD36 and CLA-1/SR-BI in the 21

S. F. Cai, R. J. Kirby, P. N. Howles, and D. Y. Hui, Differentiation-dependent expression and localization of the class B type I scavenger receptor in intestine, Journal of lipid research, pp.42-902, 2001.

M. Trigatti, S. Krieger, D. E. Vanpatten, A. Cohen, and . Rigotti, Hepatic cholesterol and bile acid metabolism and intestinal cholesterol absorption in scavenger receptor class B type I-deficient mice, Journal of lipid research, pp.42-170, 2001.

S. W. Altmann, H. R. Davis, J. , L. J. Zhu, X. Yao et al., Niemann-Pick C1 Like 1 Protein Is Critical for Intestinal Cholesterol Absorption, Science, vol.303, issue.5661, pp.303-1201, 2004.
DOI : 10.1126/science.1093131

S. W. Altmann, H. R. Davis, J. , X. Yao, M. Laverty et al., The identification of intestinal scavenger receptor class B, type I (SR-BI) by expression cloning and its role in cholesterol absorption, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1580, issue.1, pp.1580-77, 2002.
DOI : 10.1016/S1388-1981(01)00190-1

A. Rigotti, B. L. Trigatti, M. Penman, H. Rayburn, J. Herz et al., A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism, Proceedings of the National Academy of Sciences of the United States of America, pp.94-12610, 1997.
DOI : 10.1073/pnas.93.21.11448

F. Bietrix, D. Yan, M. Nauze, C. Rolland, J. Bertrand-michel et al., Accelerated lipid absorption in mice overexpressing intestinal SR-BI, The Journal of biological chemistry, pp.281-7214, 2006.

. Brown, Intestinal SR-BI does not impact cholesterol absorption or transintestinal cholesterol efflux in mice, Journal of lipid research, vol.54, pp.1567-1577, 2013.

. Adeli, Intestinal SR-BI is upregulated in insulin-resistant states and is associated with overproduction of intestinal apoB48-containing lipoproteins, American journal of physiology, vol.301, pp.326-337, 2011.

M. Lino, S. Farr, C. Baker, M. Fuller, B. Trigatti et al., Intestinal scavenger receptor class B type I (SR-BI) as a novel regulator of chylomicron production in healthy and diet-induced obese states, American journal of physiology, 2015.

C. Mineo and P. W. Shaul, Functions of scavenger receptor class B, type I in atherosclerosis, Current Opinion in Lipidology, vol.23, issue.5, pp.487-493, 2012.
DOI : 10.1097/MOL.0b013e328357ba61

O. Beaslas, C. Cueille, F. Delers, D. Chateau, J. Chambaz et al., Sensing of Dietary Lipids by Enterocytes: A New Role for SR-BI/CLA-1, PLoS ONE, vol.395, issue.1, p.4278, 2009.
DOI : 10.1371/journal.pone.0004278.g007

S. Saddar, V. Carriere, W. R. Lee, K. Tanigaki, I. S. Yuhanna et al., Scavenger Receptor Class B Type I Is a Plasma Membrane Cholesterol Sensor, Circulation Research, vol.112, issue.1, pp.140-151, 2013.
DOI : 10.1161/CIRCRESAHA.112.280081

URL : http://circres.ahajournals.org/content/circresaha/112/1/140.full.pdf

I. Levental and S. L. Veatch, The Continuing Mystery of Lipid Rafts, Journal of Molecular Biology, vol.428, issue.24, pp.4749-4764, 2016.
DOI : 10.1016/j.jmb.2016.08.022

S. Saddar, C. Mineo, and P. W. Shaul, Signaling by the high-affinity HDL receptor scavenger receptor B type I, Arteriosclerosis, thrombosis, and vascular biology, pp.30-144, 2010.
DOI : 10.1161/atvbaha.109.196170

URL : http://atvb.ahajournals.org/content/atvbaha/30/2/144.full.pdf

M. Williams, P. W. De-la-llera-moya, D. L. Shaul, and . Silver, Cholesterol binding, efflux, and a PDZinteracting domain of scavenger receptor-BI mediate HDL-initiated signaling, The Journal of clinical investigation, pp.115-969, 2005.

G. H. Williams and . Rothblat, Scavenger receptor class B type I affects cholesterol homeostasis by magnifying cholesterol flux between cells and HDL, Journal of lipid research, vol.42, pp.1969-1978, 2001.

D. L. Phillips and . Williams, Scavenger receptor BI (SR-BI) mediates free cholesterol flux independently of HDL tethering to the cell surface, Journal of lipid research, vol.40, pp.575-580, 1999.

M. C. Phillips, Molecular mechanisms of cellular cholesterol efflux, The Journal of biological chemistry, pp.24020-24029, 2014.

G. De-angelis, F. Fabre, S. Guillou, L. Hoffman, E. Laplanche et al., An interlaboratory study to evaluate the effects of medium composition on the differentiation and barrier function of Caco-2 cell lines, Altern Lab Anim, pp.33-603, 2005.

I. Chantret, A. Rodolosse, A. Barbat, E. Dussaulx, E. Brot-laroche et al., Differential expression of sucrase-isomaltase in clones isolated from early and late passages of the cell line Caco-2: evidence for glucose-dependent negative regulation, Journal of cell science, pp.107-213, 1994.

P. Chateau, J. Serradas, P. Teulon, R. De-lonlay, E. Scharfmann et al., Mutations in SLC2A2 gene reveal hGLUT2 function in pancreatic beta cell development, The Journal of biological chemistry, pp.288-31080, 2013.

D. Chateau, T. Pauquai, F. Delers, M. Rousset, J. Chambaz et al., Lipid micelles stimulate the secretion of triglyceride-enriched apolipoprotein B48-containing lipoproteins by Caco-2 cells, Journal of Cellular Physiology, vol.152, issue.3, pp.202-767, 2005.
DOI : 10.1016/0005-2760(94)90203-8

E. Demignot, Autophagosomes contribute to intracellular lipid distribution in enterocytes, Molecular biology of the cell, vol.25, pp.118-132, 2014.

M. Jansen, Y. Ohsaki, L. R. Rega, R. Bittman, V. M. Olkkonen et al., Role of ORPs in Sterol Transport from Plasma Membrane to ER and Lipid Droplets in Mammalian Cells, Traffic, vol.266, issue.2, pp.12-218, 2011.
DOI : 10.1139/o59-099

J. Spandl, D. J. White, J. Peychl, and C. Thiele, Live Cell Multicolor Imaging of Lipid Droplets with a New Dye, LD540, Traffic, vol.118, issue.11, pp.10-1579, 2009.
DOI : 10.1111/j.1600-0854.2009.00980.x

F. Beilstein, J. Bouchoux, M. Rousset, and S. Demignot, Proteomic Analysis of Lipid Droplets from Caco-2/TC7 Enterocytes Identifies Novel Modulators of Lipid Secretion, PLoS ONE, vol.84, issue.1, p.53017, 2013.
DOI : 10.1371/journal.pone.0053017.s004

URL : https://hal.archives-ouvertes.fr/hal-01537240

J. Folch, M. Lees, G. H. Sloane, and . Stanley, A simple method for the isolation and purification of total lipides from animal tissues, The Journal of biological chemistry, pp.226-497, 1957.

G. Vial, M. A. Chauvin, N. Bendridi, A. Durand, E. Meugnier et al., Imeglimin Normalizes Glucose Tolerance and Insulin Sensitivity and Improves Mitochondrial Function in Liver of a High-Fat, High-Sucrose Diet Mice Model, Diabetes, vol.64, issue.6, pp.64-2254, 2015.
DOI : 10.2337/db14-1220

T. Stanislas, D. Bouyssie, M. Rossignol, S. Vesa, J. Fromentin et al., Quantitative Proteomics Reveals a Dynamic Association of Proteins to Detergent-resistant Membranes upon Elicitor Signaling in Tobacco, Molecular & Cellular Proteomics, vol.15, issue.9, pp.2186-2198, 2009.
DOI : 10.1023/B:PLAN.0000007000.29697.81

A. I. Nesvizhskii, A. Keller, E. Kolker, and R. Aebersold, A Statistical Model for Identifying Proteins by Tandem Mass Spectrometry, Analytical Chemistry, vol.75, issue.17, pp.75-4646, 2003.
DOI : 10.1021/ac0341261

X. Lai, L. Wang, H. Tang, and F. A. Witzmann, A Novel Alignment Method and Multiple Filters for Exclusion of Unqualified Peptides To Enhance Label-Free Quantification Using Peptide Intensity in LC???MS/MS, Journal of Proteome Research, vol.10, issue.10, pp.10-4799, 2011.
DOI : 10.1021/pr2005633

M. E. Monroe, J. L. Shaw, D. S. Daly, J. N. Adkins, and R. D. Smith, MASIC: A software program for fast quantitation and flexible visualization of chromatographic profiles from detected LC???MS(/MS) features, Computational Biology and Chemistry, vol.32, issue.3, pp.32-215, 2008.
DOI : 10.1016/j.compbiolchem.2008.02.006

M. Chambaz, J. M. Rousset, E. Lacorte, S. Morel, and . Demignot, The proteome of cytosolic lipid droplets isolated from differentiated Caco-2/TC7 enterocytes reveals cell-specific characteristics, Biol Cell, vol.103, pp.499-517, 2011.

F. Beilstein, V. Carriere, A. Leturque, and S. Demignot, Characteristics and functions of lipid droplets and associated proteins in enterocytes, Experimental Cell Research, vol.340, issue.2, pp.172-179, 2016.
DOI : 10.1016/j.yexcr.2015.09.018

URL : https://hal.archives-ouvertes.fr/hal-01289686

R. J. Cenedella, Cholesterol Synthesis Inhibitor U18666A and the Role of Sterol Metabolism and Trafficking in Numerous Pathophysiological Processes, Lipids, vol.43, issue.6, pp.44-477, 2009.
DOI : 10.1007/s00441-004-0941-3

D. A. Brown and J. K. Rose, Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface, Cell, vol.68, issue.3, pp.68-533, 1992.
DOI : 10.1016/0092-8674(92)90189-J

C. Mineo and P. W. Shaul, Regulation of signal transduction by HDL, Journal of Lipid Research, vol.172, issue.9, pp.2315-2324, 2013.
DOI : 10.1097/MOL.0b013e3283468061

URL : http://www.jlr.org/content/54/9/2315.full.pdf

G. H. Hansen, L. L. Niels-christiansen, L. Immerdal, and E. M. Danielsen, Scavenger receptor class B type I (SR-BI) in pig enterocytes: trafficking from the brush border to lipid droplets during fat absorption, Gut, vol.52, issue.10, pp.52-1424, 2003.
DOI : 10.1136/gut.52.10.1424

. Comera, Exposure to dietary lipid leads to rapid production of cytosolic lipid droplets near the brush border membrane, Nutr Metab (Lond), pp.13-2016
URL : https://hal.archives-ouvertes.fr/hal-01595653

G. Dugail and . Dagher, Insulin and angiotensin II induce the translocation of scavenger receptor class B, type I from intracellular sites to the plasma membrane of adipocytes, The Journal of biological chemistry, pp.280-33536, 2005.

G. Ferre, A. Dagher, and . Quignard-boulange, In vivo evidence for a role of adipose tissue SR-BI in the nutritional and hormonal regulation of adiposity and cholesterol homeostasis, Arteriosclerosis, thrombosis, and vascular biology, pp.27-1340, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00283347

Y. Kawasaki, A. Nakagawa, K. Nagaosa, A. Shiratsuchi, and Y. Nakanishi, Phosphatidylserine Binding of Class B Scavenger Receptor Type I, a Phagocytosis Receptor of Testicular Sertoli Cells, Journal of Biological Chemistry, vol.59, issue.30, pp.277-27559, 2002.
DOI : 10.1016/S0092-8674(00)81202-7

S. Orlowski, C. Comera, F. Terce, and X. Collet, Lipid rafts: dream or reality for cholesterol transporters?, European Biophysics Journal, vol.276, issue.9, pp.869-885, 2007.
DOI : 10.1016/j.bbalip.2005.12.004

URL : https://hal.archives-ouvertes.fr/hal-00258984

A. Rigotti, S. L. Acton, and M. Krieger, The Class B Scavenger Receptors SR-BI and CD36 Are Receptors for Anionic Phospholipids, Journal of Biological Chemistry, vol.264, issue.27, pp.16221-16224, 1995.
DOI : 10.1016/0005-2736(80)90558-1

URL : http://www.jbc.org/content/270/27/16221.full.pdf

C. J. Fielding and P. E. Fielding, Cholesterol and caveolae: structural and functional relationships, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1529, issue.1-3, pp.1529-210, 2000.
DOI : 10.1016/S1388-1981(00)00150-5

J. Hu, Z. Zhang, W. J. Shen, and S. Azhar, Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones, Nutrition & Metabolism, vol.7, issue.1, pp.7-47, 2010.
DOI : 10.1186/1743-7075-7-47

D. L. Haynes, G. H. Williams, and . Rothblat, Expression of scavenger receptor BI in COS-7 cells alters cholesterol content and distribution, Biochemistry, pp.39-221, 2000.

S. Parathath, M. A. Connelly, R. A. Rieger, S. M. Klein, N. A. Abumrad et al., Changes in Plasma Membrane Properties and Phosphatidylcholine Subspecies of Insect Sf9 Cells Due to Expression of Scavenger Receptor Class B, Type I, and CD36, Journal of Biological Chemistry, vol.279, issue.40, pp.279-41310, 2004.
DOI : 10.1074/jbc.M404952200

A. R. Leventhal, W. Chen, A. R. Tall, and I. Tabas, Acid Sphingomyelinase-deficient Macrophages Have Defective Cholesterol Trafficking and Efflux, Journal of Biological Chemistry, vol.268, issue.48, pp.276-44976, 2001.
DOI : 10.1016/S0009-3084(99)00081-X

URL : http://www.jbc.org/content/276/48/44976.full.pdf

K. Nagao, K. Takahashi, K. Hanada, N. Kioka, M. Matsuo et al., Enhanced apoA-Idependent cholesterol efflux by ABCA1 from sphingomyelin-deficient Chinese hamster ovary cells, The Journal of biological chemistry, pp.282-14868, 2007.
DOI : 10.1074/jbc.m611230200

URL : http://www.jbc.org/content/282/20/14868.full.pdf

D. L. Johnson, G. H. Williams, and . Rothblat, High density lipoprotein phospholipid composition is a major determinant of the bi-directional flux and net movement of cellular free cholesterol mediated by scavenger receptor BI, The Journal of biological chemistry, pp.275-36596, 2000.

P. V. Subbaiah, L. R. Gesquiere, and K. Wang, Regulation of the selective uptake of cholesteryl esters from high density lipoproteins by sphingomyelin, Journal of Lipid Research, vol.30, issue.12, pp.46-2699, 2005.
DOI : 10.1074/jbc.M309992200

A. C. Chadwick and D. Sahoo, Functional Characterization of Newly-Discovered Mutations in Human SR-BI, PLoS ONE, vol.7, issue.9, p.45660, 2012.
DOI : 10.1371/journal.pone.0045660.g006

M. Kronke, Biophysics of ceramide signaling: interaction with proteins and phase transition of membranes, Chemistry and Physics of Lipids, vol.101, issue.1, pp.109-121, 1999.
DOI : 10.1016/S0009-3084(99)00059-6

M. Chakraborty and X. C. Jiang, Sphingomyelin and Its Role in Cellular Signaling, Adv Exp Med Biol, pp.991-992, 2013.
DOI : 10.1007/978-94-007-6331-9_1

M. Langeveld and J. M. Aerts, Glycosphingolipids and insulin resistance, Progress in lipid research, pp.196-205, 2009.
DOI : 10.1016/j.plipres.2009.03.002

S. J. Park, K. P. Lee, and D. S. Im, Action and Signaling of Lysophosphatidylethanolamine in MDA-MB-231 Breast Cancer Cells, Biomolecules & Therapeutics, vol.22, issue.2, pp.22-129, 2014.
DOI : 10.4062/biomolther.2013.110

K. S. Park, H. Y. Lee, S. Y. Lee, M. K. Kim, S. D. Kim et al., Lysophosphatidylethanolamine stimulates chemotactic migration and cellular invasion in SK-OV3 human ovarian cancer cells: Involvement of pertussis toxin-sensitive G-protein coupled receptor, FEBS Letters, vol.5, issue.23, pp.581-4411, 2007.
DOI : 10.1093/jnci/93.10.762

A. Nishina, H. Kimura, A. Sekiguchi, R. H. Fukumoto, S. Nakajima et al., Lysophosphatidylethanolamine in Grifola frondosa as a neurotrophic activator via activation of MAPK, Journal of lipid research, pp.47-1434, 2006.

J. P. Whitelegge, Integral Membrane Proteins and Bilayer Proteomics, Analytical Chemistry, vol.85, issue.5, pp.2558-2568, 2013.
DOI : 10.1021/ac303064a

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664232/pdf

S. Tan, H. T. Tan, and M. C. Chung, Membrane proteins and membrane proteomics, PROTEOMICS, vol.11, issue.19, pp.3924-3932, 2008.
DOI : 10.1074/mcp.M800068-MCP200

K. Simons and J. L. Sampaio, Membrane Organization and Lipid Rafts, Cold Spring Harbor Perspectives in Biology, vol.3, issue.10, p.4697, 2011.
DOI : 10.1101/cshperspect.a004697

K. B. Kim, J. W. Lee, C. S. Lee, B. W. Kim, H. J. Choo et al., Oxidation???reduction respiratory chains and ATP synthase complex are localized in detergent-resistant lipid rafts, PROTEOMICS, vol.36, issue.8, pp.6-2444, 2006.
DOI : 10.1038/emm.2004.60

Y. B. Hu, E. B. Dammer, R. J. Ren, and G. Wang, The endosomal-lysosomal system: from acidification and cargo sorting to neurodegeneration, Translational Neurodegeneration, vol.160, issue.1???2, pp.4-2015
DOI : 10.1016/j.cell.2014.12.019

URL : https://translationalneurodegeneration.biomedcentral.com/track/pdf/10.1186/s40035-015-0041-1?site=translationalneurodegeneration.biomedcentral.com

V. W. Hsu and R. Prekeris, Transport at the recycling endosome, Current Opinion in Cell Biology, vol.22, issue.4, pp.528-534, 2010.
DOI : 10.1016/j.ceb.2010.05.008

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2910225/pdf

C. Enrich, C. Rentero, A. Hierro, and T. Grewal, Role of cholesterol in SNARE-mediated trafficking on intracellular membranes, Journal of Cell Science, vol.128, issue.6, pp.1071-1081, 2015.
DOI : 10.1242/jcs.164459

S. Kraemer, Mediated Cholesterol Movement to Mitochondria Supports Steroidogenesis in Rodent Cells, Molecular endocrinology, pp.30-234, 2016.

F. B. Kraemer, W. J. Shen, and S. Azhar, SNAREs and cholesterol movement for steroidogenesis, Molecular and Cellular Endocrinology, vol.441, pp.441-458, 2017.
DOI : 10.1016/j.mce.2016.07.034

Y. Wang, L. Li, C. Hou, Y. Lai, J. Long et al., SNARE-mediated membrane fusion in autophagy, Seminars in Cell & Developmental Biology, vol.60, pp.60-97, 2016.
DOI : 10.1016/j.semcdb.2016.07.009

S. S. Taylor, J. A. Buechler, and W. , Yonemoto, cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes, Annu Rev Biochem, pp.59-971, 1990.

D. A. Fisher, J. F. Smith, J. S. Pillar, S. H. St-denis, and J. B. Cheng, Isolation and characterization of PDE8A, a novel human cAMP-specific phosphodiesterase, Biochemical and biophysical research communications, pp.246-570, 1998.

R. Cipriano, K. L. Miskimen, B. L. Bryson, C. R. Foy, C. A. Bartel et al., FAM83B-mediated activation of PI3K/AKT and MAPK signaling cooperates to promote epithelial cell transformation and resistance to targeted therapies., Oncotarget, vol.4, issue.5, pp.729-738, 2013.
DOI : 10.18632/oncotarget.1027

J. E. Azevedo and W. , Schliebs, Pex14p, more than just a docking protein, Biochimica et biophysica acta, pp.1763-1574, 2006.
DOI : 10.1016/j.bbamcr.2006.09.002

URL : https://doi.org/10.1016/j.bbamcr.2006.09.002

W. Erdmann, M. Schliebs, M. Wilmanns, and . Sattler, Structural basis for competitive interactions of Pex14 with the import receptors Pex5 and Pex19, EMBO J, vol.28, pp.745-754, 2009.

. Carlsson, Interaction of scavenger receptor class B type I with peroxisomal targeting receptor Pex5p, pp.312-1325, 2003.

S. Hara-kuge and Y. Fujiki, The peroxin Pex14p is involved in LC3-dependent degradation of mammalian peroxisomes, Experimental Cell Research, vol.314, issue.19, pp.314-3531, 2008.
DOI : 10.1016/j.yexcr.2008.09.015