A. Depetris-chauvin, D. Galagovsky, and Y. Grosjean, Chemicals and chemoreceptors: ecologically relevant signals driving behavior in Drosophila, Front. Ecol. Evol, vol.3, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01214143

M. C. Stensmyr, Drosophila sechellia as a model in chemosensory neuroecology, Ann. N. Y. Acad. Sci, vol.1170, pp.468-475, 2009.

W. Jones, Olfactory carbon dioxide detection by insects and other animals, Mol. Cells, vol.35, pp.87-92, 2013.

M. C. Larsson, Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction, Neuron, vol.43, pp.703-717, 2004.

E. M. Neuhaus, Odorant receptor heterodimerization in the olfactory system of Drosophila melanogaster, Nat. Neurosci, vol.8, pp.15-22, 2005.

L. Abuin, Functional architecture of olfactory ionotropic glutamate receptors, Neuron, vol.69, pp.44-60, 2011.

A. F. Silbering, Complementary function and integrated wiring of the evolutionarily distinct Drosophila olfactory subsystems, J. Neurosci, vol.31, pp.13357-75, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00788031

E. Fishilevich, Chemotaxis behavior mediated by single larval olfactory neurons in Drosophila, Curr. Biol, vol.15, pp.2086-96, 2005.

S. A. Kreher, J. Y. Kwon, and J. R. Carlson, The molecular basis of odor coding in the Drosophila larva, Neuron, vol.46, pp.445-56, 2005.

S. Mansourian and M. C. Stensmyr, The chemical ecology of the fly, Curr. Opin. Neurobiol, vol.34, pp.95-102, 2015.

T. A. Markow and P. O'grady, Reproductive ecology of Drosophila, Funct. Ecol, vol.22, pp.747-759, 2008.

P. G. Becher, Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development, Funct. Ecol, vol.26, pp.822-828, 2012.

T. Brummel, A. Ching, L. Seroude, A. F. Simon, and S. Benzer, Drosophila lifespan enhancement by exogenous bacteria, Proc. Natl. Acad. Sci. USA, vol.101, pp.12974-12983, 2004.

A. Koh, F. De-vadder, P. Kovatcheva-datchary, and F. Bäckhed, From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites, Cell, vol.165, pp.1332-1345, 2016.

M. Yang and Y. Choong, A rapid gas chromatographic method for direct determination of short-chain (C2-C12) volatile organic acids in foods, Food Chem, vol.75, pp.101-108, 2001.

C. W. Klampfl, W. Buchberger, and P. R. Haddad, Determination of organic acids in food samples by capillary zone electrophoresis, J. Chromatogr. A, vol.881, pp.357-361, 2000.

J. Zhu, K. Park, and T. C. Baker, Identification Of Odors From Overripe Mango, J Chem. Ecol, vol.29, pp.899-909, 2003.

H. Idstein, C. Bauer, and P. Schreier, Volatile acids in tropical fruits: cherimoya (Annona cherimolia, Mill.), guava (psidium guajava, L.), mango (Mangifera indica, L., var. Alphonso), papaya (Carica papaya, L.), Z. Lebensm. Unters. Forsch, vol.180, pp.394-397, 1985.

A. Lopez and V. C. Quesnel, Volatile fatty acid production in cacao fermentation and the effect on chocolate flavour, J. Sci. Food Agric, vol.24, pp.319-326, 1973.

W. Franco, I. M. Perez-diaz, S. D. Johanningsmeier, and R. F. Mcfeeters, Characteristics of spoilage-associated secondary cucumber fermentation, Appl. Environ. Microbiol, vol.78, pp.1273-1284, 2012.

M. Ai, Acid sensing by the Drosophila olfactory system, Nature, vol.468, pp.691-695, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00755440

. Kreher, . Sa, D. Mathew, J. Kim, and J. R. Carlson, Translation of sensory input into behavioral output via an olfactory system, Neuron, vol.59, pp.110-134, 2008.

S. Khurana and O. Siddiqi, Olfactory responses of Drosophila larvae, Chem. Senses, vol.38, pp.315-338, 2013.

. Hallem and J. R. Carlson, Coding of odors by a receptor repertoire, Cell, vol.125, pp.143-60, 2006.

D. Münch and C. G. Galizia, DoOR 2.0 -Comprehensive Mapping of Drosophila melanogaster Odorant Responses, Scientific reports, vol.6, p.21841, 2016.

, SCIENtIFIC REPORtS |, vol.7

R. M. Joseph, A. V. Devineni, I. F. King, and U. Heberlein, Oviposition preference for and positional avoidance of acetic acid provide a model for competing behavioral drives in Drosophila, Proc. Natl. Acad. Sci. USA, vol.106, pp.11352-11359, 2009.

J. A. Gorter, The nutritional and hedonic value of food modulate sexual receptivity in Drosophila melanogaster females, Sci. Rep, vol.6, p.19441, 2016.

J. Atallah, L. Teixeira, R. Salazar, G. Zaragoza, and A. Kopp, The making of a pest: the evolution of a fruit-penetrating ovipositor in Drosophila suzukii and related species, Proc. R. Soc. B Biol. Sci, vol.281, pp.1-9, 2014.

A. G. Moat, J. W. Foster, and M. Spector, , pp.412-433, 2002.

R. Benton, K. S. Vannice, C. Gomez-diaz, and L. B. Vosshall, Variant Ionotropic Glutamate Receptors as Chemosensory Receptors in Drosophila, Cell, vol.136, pp.5-7, 2009.

Y. V. Zhang, J. Ni, and C. Montell, The molecular basis for attractive salt-taste coding in Drosophila, Science, vol.340, pp.1334-1342, 2013.

S. Stewart, T. Koh, A. C. Ghosh, and J. R. Carlson, Candidate ionotropic taste receptors in the Drosophila larva, Proc. Natl. Acad. Sci. USA 1-7, 2015.

A. Couto, M. Alenius, and B. J. Dickson, Molecular, anatomical, and functional organization of the Drosophila olfactory system, Curr. Biol, vol.15, pp.1535-1582, 2005.

S. Charlu, Z. Wisotsky, A. Medina, and A. Dahanukar, Acid sensing by sweet and bitter taste neurons in Drosophila melanogaster, Nat. Commun, vol.4, p.2042, 2013.

Y. Chen and H. Amrein, Enhancing perception of contaminated food through acid-mediated modulation of taste neuron responses, Curr. Biol, vol.24, pp.1969-77, 2014.

D. C. Robacker, Chemical Ecology of Bacterial Relationships with Fruit Flies, Integr. Prot. Olive Crop, vol.30, pp.9-22, 2007.

J. M. Tennessen and C. S. Thummel, Coordinating growth and maturation -insights from Drosophila, Curr. Biol, vol.21, pp.750-757, 2011.

Y. Wang, Y. Pu, and P. Shen, Neuropeptide-gated perception of appetitive olfactory inputs in drosophila larvae, Cell Rep, vol.3, pp.820-830, 2013.

S. Kun, J. M. Rezessy-szabó, Q. D. Nguyen, and Á. Hoschke, Changes of microbial population and some components in carrot juice during fermentation with selected Bifidobacterium strains, Process Biochem, vol.43, pp.816-821, 2008.

M. Karageorgi, Evolution of Multiple Sensory Systems Drives Novel Egg-Laying Behavior in the Fruit Pest Drosophila suzukii, Curr. Biol, pp.847-853, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01688328

C. Zhang, M. J. Brandt, C. Schwab, and M. G. Gänzle, Propionic acid production by cofermentation of Lactobacillus buchneri and Lactobacillus diolivorans in sourdough, Food Microbiol, vol.27, pp.390-395, 2010.

M. Walker and C. A. Phillips, The growth of Propionibacterium cyclohexanicum in fruit juices and its survival following elevated temperature treatments, Food Microbiol, vol.24, pp.313-318, 2007.

M. Viedma and P. , Effect of enterocin AS-48 in combination with high-intensity pulsed-electric field treatment against the spoilage bacterium Lactobacillus diolivorans in apple juice, Food Microbiol, vol.26, pp.491-496, 2009.

C. R. Cox and M. S. Gilmore, Native microbial colonization of Drosophila melanogaster and its use as a model of Enterococcus faecalis pathogenesis, Infect. Immun, 2007.

J. E. Blum, C. N. Fischer, J. Miles, and J. Handelsman, Frequent replenishment sustains the beneficial microbiome of Drosophila melanogaster, MBio, vol.4, pp.1-8, 2013.

S. Mansourian, Fecal-Derived Phenol Induces Egg-Laying Aversion in Drosophila, Curr. Biol, pp.2762-2769, 2016.

I. Venu, Z. Durisko, J. Xu, and R. Dukas, Social attraction mediated by fruit flies' microbiome, J. Exp. Biol, vol.217, pp.1346-52, 2014.

S. Min, M. Ai, S. Shin, and G. S. Suh, Dedicated olfactory neurons mediating attraction behavior to ammonia and amines in Drosophila, Proc. Natl. Acad. Sci. USA, vol.110, pp.1321-1330, 2013.

C. Fischer, Metabolite exchange between microbiome members produces compounds that influence Drosophila behavior, vol.6, pp.1-25, 2017.

J. Schnürer and J. Magnusson, Antifungal lactic acid bacteria as biopreservatives, Trends Food Sci. Technol, vol.16, pp.70-78, 2005.

R. Drew, A. Courtice, and D. Teakle, Bacteria as a natural source of food for adult fruit flies (Diptera: Tephritidae), Oecologia, vol.60, pp.279-284, 1983.

S. C. Shin, Drosophila Microbiome Modulates Host Developmental and Metabolic Homeostasis via Insulin Signaling. Science (80-.), vol.334, pp.670-674, 2011.

O. Rota-stabelli, M. Blaxter, G. Anfora, . Drosophila, and . Suzukii, Curr. Biol, vol.23, pp.8-9, 2013.

S. Ramasamy, The Evolution of Olfactory Gene Families in Drosophila and the Genomic Basis of chemical-Ecological Adaptation in Drosophila suzukii, Genome Biol. Evol, vol.8, pp.2297-311, 2016.

P. V. Hickner, The making of a pest: Insights from the evolution of chemosensory receptor families in a pestiferous and invasive fly, Drosophila suzukii, BMC Genomics, vol.17, p.648, 2016.

M. Chakir, O. Peridy, P. Capy, E. Pla, and J. R. David, Adaptation to alcoholic fermentation in Drosophila: A parallel selection imposed by environmental ethanol and acetic acid, Proc. Natl. Acad. Sci. USA, vol.90, pp.3621-3625, 1993.

M. Ai, Ionotropic glutamate receptors IR64a and IR8a form a functional odorant receptor complex in vivo in Drosophila, J Neurosci, vol.33, pp.10741-10749, 2013.

V. Croset, M. Schleyer, J. R. Arguello, B. Gerber, and R. Benton, A molecular and neuronal basis for amino acid sensing in the Drosophila larva, Sci. Rep, vol.6, p.34871, 2016.

L. Ni, The Ionotropic Receptors IR21a and IR25a mediate cool sensing in Drosophila, 2015.

M. M. Simonnet, M. Berthelot-grosjean, and Y. Grosjean, Testing Drosophila olfaction with a Y-maze assay, J. Vis. Exp. e51241, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01187026

D. Galagovsky, The Drosophila insulin-degrading enzyme restricts growth by modulating the PI3K pathway in a cellautonomous manner, Mol. Biol. Cell, vol.25, pp.916-940, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01222892

Q. Wu, Y. Zhang, J. Xu, and P. Shen, Regulation of hunger-driven behaviors by neural ribosomal S6 kinase in Drosophila, Proc. Natl. Acad. Sci. USA, vol.102, pp.13289-94, 2005.