D. J. Barker, The fetal origins of diseases of old age, Eur J Clin Nutr, vol.46, issue.3, pp.3-9, 1992.

M. Desai, D. Gayle, G. Han, and M. G. Ross, Programmed hyperphagia due to reduced anorexigenic mechanisms in intrauterine growth-restricted offspring, Reprod Sci Thousand Oaks Calif, vol.14, pp.329-366, 2007.

M. I. Goran, K. Dumke, S. G. Bouret, B. Kayser, R. W. Walker et al., The obesogenic effect of high fructose exposure during early development, Nat Rev Endocrinol, vol.9, pp.494-500, 2013.

B. E. Levin, Metabolic imprinting: critical impact of the perinatal environment on the regulation of energy homeostasis, Philos Trans R Soc Lond B Biol Sci, vol.361, pp.1107-1128, 2006.

C. M. Olson, M. S. Strawderman, and B. A. Dennison, Maternal weight gain during pregnancy and child weight at age 3 years. Matern Child Health, J, vol.13, p.839, 2009.

H. Chen, D. Simar, and M. J. Morris, Hypothalamic neuroendocrine circuitry is programmed by maternal obesity: interaction with postnatal nutritional environment, PLoS One, vol.4, p.6259, 2009.

B. S. Muhlhausler, C. L. Adam, P. A. Findlay, J. A. Duffield, and I. C. Mcmillen, Increased maternal nutrition alters development of the appetite-regulating network in the brain, FASEB J, vol.20, pp.1257-1266, 2006.

A. Samuelsson, P. A. Matthews, M. Argenton, M. R. Christie, J. M. Mcconnell et al., Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance, Hypertension, vol.51, pp.383-92, 2008.

P. J. Kenny, Common cellular and molecular mechanisms in obesity and drug addiction, Nat Rev Neurosci, vol.12, pp.638-51, 2011.

R. Denis, A. Joly-amado, E. Webber, F. Langlet, M. Schaeffer et al., Palatability can drive feeding independent of AgRP neurons, Cell Metab, vol.22, pp.646-57, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02067393

E. Stice, S. Spoor, C. Bohon, and D. M. Small, Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele, Science, vol.322, pp.449-52, 2008.

G. K. Frank, J. R. Reynolds, M. E. Shott, L. Jappe, T. T. Yang et al., Anorexia nervosa and obesity are associated with opposite brain reward response, Neuropsychopharmacology, vol.37, pp.2031-2077, 2012.

E. Green, A. Jacobson, L. Haase, and C. Murphy, Reduced nucleus accumbens and caudate nucleus activation to a pleasant taste is associated with obesity in older adults, Brain Res, vol.1386, pp.109-126, 2011.

J. F. Davis, A. L. Tracy, J. D. Schurdak, M. H. Tschop, J. W. Lipton et al., Exposure to elevated levels of dietary fat attenuates psychostimulant reward and mesolimbic dopamine turnover in the rat, Behav Neurosci, vol.122, pp.1257-63, 2008.

B. M. Geiger, M. Haburcak, N. M. Avena, M. C. Moyer, B. G. Hoebel et al., Deficits of mesolimbic dopamine neurotransmission in rat dietary obesity, Neuroscience, vol.159, pp.1193-1202, 2009.

H. M. Rivera, P. Kievit, M. A. Kirigiti, L. A. Bauman, K. Baquero et al., Maternal high-fat diet and obesity impact palatable food intake and dopamine signaling in nonhuman primate offspring, Obesity, vol.23, pp.2157-64, 2015.

J. R. Gugusheff, Z. Y. Ong, and B. S. Muhlhausler, The early origins of food preferences: targeting the critical windows of development, FASEB J, vol.29, pp.365-73, 2015.

S. A. Bayol, S. J. Farrington, and N. C. Stickland, A maternal "junk food" diet in pregnancy and lactation promotes an exacerbated taste for "junk food" and a greater propensity for obesity in rat offspring, Br J Nutr, vol.98, pp.843-51, 2007.

Z. Vucetic, J. Kimmel, K. Totoki, E. Hollenbeck, and T. M. Reyes, Maternal highfat diet alters methylation and gene expression of dopamine and opioidrelated genes, Endocrinology, vol.151, pp.4756-64, 2010.

L. Naef, L. Moquin, D. Bo, G. Giros, B. Gratton et al., Maternal highfat intake alters presynaptic regulation of dopamine in the nucleus accumbens and increases motivation for fat rewards in the offspring, Neuroscience, vol.176, pp.225-261, 2011.

Z. Y. Ong and B. S. Muhlhausler, Maternal "junk-food" feeding of rat dams alters food choices and development of the mesolimbic reward pathway in the offspring, FASEB J, vol.25, pp.2167-79, 2011.

M. Romaní-pérez, A. L. Lépinay, L. Alonso, M. Rincel, L. Xia et al., Impact of perinatal exposure to high-fat diet and stress on responses to nutritional challenges, food-motivated behaviour and mesolimbic dopamine function, Int J Obes, issue.4, pp.502-511, 2017.

K. T. Beier, E. E. Steinberg, K. E. Deloach, S. Xie, K. Miyamichi et al., Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping, Cell, vol.162, pp.622-656, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02187382

K. R. Tan, C. Yvon, M. Turiault, J. J. Mirzabekov, J. Doehner et al., GABA neurons of the VTA drive conditioned place aversion, Neuron, vol.73, pp.1173-83, 2012.

R. Van-zessen, J. L. Phillips, E. A. Budygin, and G. D. Stuber, Activation of VTA GABA neurons disrupts reward consumption, Neuron, vol.73, pp.1184-94, 2012.

H. Hu, Reward and aversion, Annu Rev Neurosci, vol.39, pp.297-324, 2016.

B. G. Stanley, K. R. Urstadt, J. R. Charles, and T. Kee, Glutamate and GABA in lateral hypothalamic mechanisms controlling food intake, Physiol Behav, vol.104, pp.40-46, 2011.

D. Ancel, A. Bernard, S. Subramaniam, A. Hirasawa, G. Tsujimoto et al., The oral lipid sensor GPR120 is not indispensable for the orosensory detection of dietary lipids in mice, J Lipid Res, vol.56, pp.369-78, 2015.

K. Ackroff, F. Lucas, and A. Sclafani, Flavor preference conditioning as a function of fat source, Physiol Behav, vol.85, pp.448-60, 2005.

S. Camandola and M. P. Mattson, Toll-like receptor 4 mediates fat, sugar, and umami taste preference and food intake and body weight regulation, Obesity, vol.25, pp.1237-1282, 2017.

B. Coupé, V. Amarger, I. Grit, A. Benani, and P. Parnet, Nutritional programming affects hypothalamic organization and early response to leptin, Endocrinology, vol.151, pp.702-715, 2010.

V. Paillé, P. Brachet, and P. Damier, Role of nigral lesion in the genesis of dyskinesias in a rat model of Parkinson's disease, Neuroreport, vol.15, pp.561-565, 2004.

A. Benani, C. Hryhorczuk, A. Gouazé, X. Fioramonti, X. Brenachot et al., Food intake adaptation to dietary fat involves PSAdependent rewiring of the arcuate melanocortin system in mice, J Neurosci, vol.32, pp.11970-11979, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00760988

S. L. Kirk, A. M. Samuelsson, M. Argenton, H. Dhonye, T. Kalamatianos et al., Maternal obesity induced by diet in rats permanently influences central processes regulating food intake in offspring, PLoS One, vol.4, p.5870, 2009.

Z. Y. Ong and B. S. Muhlhausler, Consuming a low-fat diet from weaning to adulthood reverses the programming of food preferences in male, but not in female, offspring of "junk food"-fed rat dams, Acta Physiol Oxf Engl, vol.210, pp.127-168, 2014.

G. A. Ribaroff, E. Wastnedge, A. J. Drake, R. M. Sharpe, and T. Chambers, Animal models of maternal high fat diet exposure and effects on metabolism in offspring: a meta-regression analysis, Obes Rev, vol.18, issue.6, pp.673-86, 2017.

C. J. Bautista, S. Montaño, V. Ramirez, A. Morales, P. W. Nathanielsz et al., Changes in milk composition in obese rats consuming a high-fat diet, Br J Nutr, vol.115, pp.538-584, 2015.

B. A. Rolls, M. I. Gurr, P. M. Van-duijvenvoorde, B. J. Rolls, and E. A. Rowe, Lactation in lean and obese rats: effect of cafeteria feeding and of dietary obesity on milk composition, Physiol Behav, vol.38, issue.86, pp.90153-90161, 1986.

C. L. White, M. N. Purpera, and C. D. Morrison, Maternal obesity is necessary for programming effect of high-fat diet on offspring, Am J Physiol Regul Integr Comp Physiol, vol.296, p.1464, 2009.

B. Sun, R. H. Purcell, C. E. Terrillion, J. Yan, T. H. Moran et al., Maternal high-fat diet during gestation or suckling differentially affects offspring leptin sensitivity and obesity, Diabetes, vol.61, pp.2833-2874, 2012.

H. Berthoud, Metabolic and hedonic drives in the neural control of appetite: who is the boss?, Curr Opin Neurobiol, vol.21, pp.888-96, 2011.

S. J. Henning, S. S. Chang, and E. G. Gisel, Ontogeny of feeding controls in suckling and weanling rats, Am J Physiol Regul Integr Comp Physiol, vol.237, pp.187-91, 1979.

S. F. Leibowitz, D. J. Lucas, K. L. Leibowitz, and Y. S. Jhanwar, Developmental patterns of macronutrient intake in female and male rats from weaning to maturity, Physiol Behav, vol.50, pp.1167-74, 1991.

P. Trifilieff, B. Feng, E. Urizar, V. Winiger, R. D. Ward et al., Increasing dopamine D2 receptor expression in the adult nucleus accumbens enhances motivation, Mol Psychiatry, vol.18, pp.1025-1058, 2013.

L. P. Spear, The adolescent brain and age-related behavioral manifestations, Neurosci Biobehav Rev, vol.24, pp.417-63, 2000.

L. F. Vendruscolo, A. B. Gueye, M. Darnaudéry, S. H. Ahmed, and M. Cador, Sugar overconsumption during adolescence selectively alters motivation and reward function in adult rats, PLoS One, vol.5, p.9296, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01153599

C. Boitard, S. L. Parkes, A. Cavaroc, F. Tantot, N. Castanon et al., Switching adolescent high-fat diet to adult control diet restores neurocognitive alterations, Front Behav Neurosci, vol.10, p.225, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02326608

F. Naneix, F. Darlot, E. Coutureau, and M. Cador, Long-lasting deficits in hedonic and nucleus accumbens reactivity to sweet rewards by sugar overconsumption during adolescence, Eur J Neurosci, vol.43, pp.671-80, 2016.

H. Baker, K. Kobayashi, H. Okano, and S. Saino-saito, Cortical and striatal expression of tyrosine hydroxylase mRNA in neonatal and adult mice, Cell Mol Neurobiol, vol.23, pp.507-525, 2003.

M. Jaber, B. Dumartin, C. Sagné, J. W. Haycock, C. Roubert et al., Differential regulation of tyrosine hydroxylase in the basal ganglia of mice lacking the dopamine transporter, Eur J Neurosci, vol.11, pp.3499-511, 1999.

M. Klietz, U. Keber, T. Carlsson, W. Chiu, G. U. Höglinger et al., l-DOPA-induced dyskinesia is associated with a deficient numerical downregulation of striatal tyrosine hydroxylase mRNA-expressing neurons, Neuroscience, vol.331, pp.120-153, 2016.

A. E. Kelley, B. A. Baldo, W. E. Pratt, and M. J. Will, Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward, Physiol Behav, vol.86, pp.773-95, 2005.

J. H. Jennings, R. L. Ung, S. L. Resendez, A. M. Stamatakis, J. G. Taylor et al., Visualizing hypothalamic network dynamics for appetitive and consummatory behaviors, Cell, vol.160, pp.516-543, 2015.

E. C. O'connor, Y. Kremer, S. Lefort, M. Harada, V. Pascoli et al., Accumbal D1R neurons projecting to lateral hypothalamus authorize feeding, Neuron, vol.88, pp.553-64, 2015.

J. H. Jennings, G. Rizzi, A. M. Stamatakis, R. L. Ung, and G. D. Stuber, The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding, Science, vol.341, pp.1517-1538, 2013.

T. R. Stratford and D. Wirtshafter, Lateral hypothalamic involvement in feeding elicited from the ventral pallidum, Eur J Neurosci, vol.37, pp.648-53, 2013.

V. Paille, E. Fino, K. Du, T. Morera-herreras, S. Perez et al., GABAergic circuits control spike-timing-dependent plasticity, J Neurosci, vol.33, pp.9353-63, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02407275

M. S. Fonseca, M. Murakami, and Z. F. Mainen, Activation of dorsal raphe serotonergic neurons promotes waiting but is not reinforcing, Curr Biol, vol.25, pp.306-321, 2015.

K. Doya, Metalearning and neuromodulation, Neural Netw, vol.15, pp.495-506, 2002.

S. F. Leibowitz and J. T. Alexander, Hypothalamic serotonin in control of eating behavior, meal size, and body weight, Biol Psychiatry, vol.44, pp.851-64, 1998.

J. Voigt and H. Fink, Serotonin controlling feeding and satiety, Behav Brain Res, vol.277, pp.14-31, 2015.

X. Brenachot, C. Rigault, E. Nédélec, A. Laderrière, T. Khanam et al., The histone acetyltransferase MOF activates hypothalamic polysialylation to prevent diet-induced obesity in mice, Mol Metab, vol.3, pp.619-648, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01185024