M. Conrad, Regulated necrosis: disease relevance and therapeutic opportunities, Nat Rev Drug Discov, vol.15, pp.348-66, 2016.

R. Weinlich, Necroptosis in development, inflammation and disease, Nat Rev Mol Cell Biol, vol.18, pp.127-163, 2017.

Y. Fuchs, Live to die another way: modes of programmed cell death and the signals emanating from dying cells, Nat Rev Mol Cell Biol, vol.16, pp.329-373, 2015.

M. Pasparakis, Necroptosis and its role in inflammation, Nature, vol.517, pp.311-331, 2015.

L. Galluzzi, Regulated cell death and adaptive stress responses, Cell Mol Life Sci, vol.73, pp.2405-2415, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01301985

Y. Fuchs, Programmed cell death in animal development and disease, Cell, vol.147, pp.742-58, 2011.

L. Galluzzi, Caspases connect cell-death signaling to organismal homeostasis, Immunity, vol.44, pp.221-252, 2016.

I. Jorgensen, Programmed cell death as a defence against infection, Nat Rev Immunol, vol.17, pp.151-64, 2017.

S. Nagata, Programmed cell death and the immune system, Nat Rev Immunol, vol.17, pp.333-373, 2017.

S. Cornillon, Programmed cell death in Dictyostelium, J Cell Sci, vol.107, pp.2691-704, 1994.

R. A. Olie, Apparent caspase independence of programmed cell death in Dictyostelium, Curr Biol, vol.8, pp.955-58, 1998.

S. Cornillon, An insertional mutagenesis approach to Dictyostelium cell death, Cell Death Differ, vol.5, pp.416-441, 1998.

F. Madeo, A yeast mutant showing diagnostic markers of early and late apoptosis, J Cell Biol, vol.139, pp.729-763, 1997.

T. Eisenberg, The mitochondrial pathway in yeast apoptosis, Apoptosis, vol.12, pp.1011-1034, 2007.

S. Buttner, Why yeast cells can undergo apoptosis: death in times of peace, love, and war, J Cell Biol, vol.175, pp.521-546, 2006.

D. R. Green, Just so stories about the evolution of apoptosis, Curr Biol, vol.26, pp.620-647, 2016.

L. Galluzzi, Essential versus accessory aspects of cell death: recommendations of the NCCD 2015, Cell Death Differ, vol.22, pp.58-73, 2015.

B. Conradt, Genetic control of programmed cell death during animal development, Annu Rev Genet, vol.43, pp.493-523, 2009.

A. P. West, Mitochondrial DNA in innate immune responses and inflammatory pathology, Nat Rev Immunol, vol.17, pp.363-75, 2017.

D. V. Krysko, Immunogenic cell death and DAMPs in cancer therapy, Nat Rev Cancer, vol.12, pp.860-75, 2012.

L. Galluzzi, Mitochondria: master regulators of danger signalling, Nat Rev Mol Cell Biol, vol.13, pp.780-88, 2012.

B. Mcdonald, Intravascular danger signals guide neutrophils to sites of sterile inflammation, Science, vol.330, pp.362-66, 2010.

J. U. Schweichel, The morphology of various types of cell death in prenatal tissues, Teratology, vol.7, pp.253-66, 1973.

L. Galluzzi, Cell death modalities: classification and pathophysiological implications, Cell Death Differ, vol.14, pp.1237-1280, 2007.

G. Kroemer, Classification of cell death: recommendations of the Nomenclature Committee on Cell Death, Cell Death Differ, vol.12, issue.2, pp.1463-67, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00407686

G. Kroemer, Classification of cell death: recommendations of the Nomenclature Committee on Cell Death, Cell Death Differ, vol.16, pp.3-11, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00407686

L. Galluzzi, Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death, Cell Death Differ, vol.19, pp.107-127, 2012.

L. Galluzzi, Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes, Cell Death Differ, vol.16, pp.1093-107, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00420382

P. E. Czabotar, Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy, Nat Rev Mol Cell Biol, vol.15, pp.49-63, 2014.

P. Pihan, BCL-2 family: integrating stress responses at the ER to control cell demise, Cell Death Differ, vol.24, pp.1478-87, 2017.

W. P. Roos, DNA damage and the balance between survival and death in cancer biology, Nat Rev Cancer, vol.16, pp.20-33, 2016.

I. Vitale, DNA damage in stem cells, Mol Cell, vol.66, pp.306-325, 2017.

G. Nunez, Deregulated Bcl-2 gene expression selectively prolongs survival of growth factor-deprived hemopoietic cell lines, J Immunol, vol.144, pp.3602-610, 1990.

G. Brumatti, Crossing paths: interactions between the cell death machinery and growth factor survival signals, Cell Mol Life Sci, vol.67, pp.1619-1649, 2010.

D. R. Green, The clearance of dying cells: table for two, Cell Death Differ, vol.23, pp.915-941, 2016.

N. Yatim, Dying cells actively regulate adaptive immune responses, Nat Rev Immunol, vol.17, pp.262-75, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01491773

D. R. Green, Immunogenic and tolerogenic cell death, Nat Rev Immunol, vol.9, pp.353-63, 2009.

V. Berghe and T. , Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features, Cell Death Differ, vol.17, pp.922-952, 2010.

C. Rogers, Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death, Nat Commun, vol.8, p.14128, 2017.

S. W. Tait, Mitochondria and cell death: outer membrane permeabilization and beyond, Nat Rev Mol Cell Biol, vol.11, pp.621-653, 2010.

L. Galluzzi, Mitochondrial regulation of cell death: a phylogenetically conserved control, Microb Cell, vol.3, pp.101-109, 2016.

T. Moldoveanu, Many players in BCL-2 family affairs, Trends Biochem Sci, vol.39, pp.101-112, 2014.

A. Shamas-din, Mechanisms of action of Bcl-2 family proteins, Cold Spring Harb Perspect Biol, vol.5, p.8714, 2013.

A. R. Delbridge, Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies, Nat Rev Cancer, vol.16, pp.99-109, 2016.

M. P. Luna-vargas, Physiological and pharmacological control of BAK, BAX, and beyond, Trends Cell Biol, vol.26, pp.906-923, 2016.

A. Aouacheria, Evolution of Bcl-2 homology motifs: homology versus homoplasy, Trends Cell Biol, vol.23, pp.103-114, 2013.

F. Llambi, BOK Is a Non-canonical BCL-2 family effector of apoptosis regulated by ER-associated degradation, Cell, vol.165, pp.421-454, 2016.

F. Edlich, Bcl-x(L) retrotranslocates Bax from the mitochondria into the cytosol, Cell, vol.145, pp.104-120, 2011.

T. P. Garner, An autoinhibited dimeric form of BAX regulates the BAX activation pathway, Mol Cell, vol.63, pp.485-97, 2016.

B. Schellenberg, Bax exists in a dynamic equilibrium between the cytosol and mitochondria to control apoptotic priming, Mol Cell, vol.49, pp.959-71, 2013.

E. H. Cheng, VDAC2 inhibits BAK activation and mitochondrial apoptosis, Science, vol.301, pp.513-530, 2003.

M. Lazarou, Inhibition of Bak activation by VDAC2 is dependent on the Bak transmembrane anchor, J Biol Chem, vol.285, pp.36876-883, 2010.

S. Naghdi, Motifs of VDAC2 required for mitochondrial Bak import and tBid-induced apoptosis, Proc Natl Acad Sci U S A, vol.112, pp.5590-99, 2015.

S. B. Ma, Bax targets mitochondria by distinct mechanisms before or during apoptotic cell death: a requirement for VDAC2 or Bak for efficient Bax apoptotic function, Cell Death Differ, vol.21, pp.1925-1960, 2014.

F. Todt, Differential retrotranslocation of mitochondrial Bax and Bak, EMBO J, vol.34, pp.67-80, 2015.

T. Kuwana, BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly, Mol Cell, vol.17, pp.525-560, 2005.

L. Chen, Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function, Mol Cell, vol.17, pp.393-403, 2005.

A. Letai, Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics, Cancer Cell, vol.2, pp.183-92, 2002.

H. Kim, Hierarchical regulation of mitochondriondependent apoptosis by BCL-2 subfamilies, Nat Cell Biol, vol.8, pp.1348-58, 2006.

P. Bouillet, Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity, Science, vol.286, pp.1735-1773, 1999.

P. Bouillet, BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes, Nature, vol.415, pp.922-948, 2002.

A. Villunger, p53-and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa, Science, vol.302, pp.1036-1074, 2003.

L. Galluzzi, Organelle-specific initiation of cell death, Nat Cell Biol, vol.16, pp.728-764, 2014.

H. C. Chen, An interconnected hierarchical model of cell death regulation by the BCL-2 family, Nat Cell Biol, vol.17, pp.1270-81, 2015.

H. Dai, Evaluation of the BH3-only protein Puma as a direct Bak activator, J Biol Chem, vol.289, pp.89-99, 2014.

T. Moldoveanu, BID-induced structural changes in BAK promote apoptosis, Nat Struct Mol Biol, vol.20, pp.589-97, 2013.

H. Dai, Transient binding of an activator BH3 domain to the Bak BH3-binding groove initiates Bak oligomerization, J Cell Biol, vol.194, pp.39-48, 2011.

D. Ren, BID, BIM, and PUMA are essential for activation of the BAX-and BAK-dependent cell death program, Science, vol.330, pp.1390-93, 2010.

M. X. Li, BAK alpha6 permits activation by BH3-only proteins and homooligomerization via the canonical hydrophobic groove, Proc Natl Acad Sci, vol.114, pp.7629-7663, 2017.

X. Luo, Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors, Cell, vol.94, pp.481-90, 1998.

E. Gavathiotis, BAX activation is initiated at a novel interaction site, Nature, vol.455, pp.1076-81, 2008.

E. Gavathiotis, BH3-triggered structural reorganization drives the activation of proapoptotic BAX, Mol Cell, vol.40, pp.481-92, 2010.

H. Kim, Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis, Mol Cell, vol.36, pp.487-99, 2009.

M. C. Wei, Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death, Science, vol.292, pp.727-757, 2001.

A. E. Alsop, Dissociation of Bak alpha1 helix from the core and latch domains is required for apoptosis, Nat Commun, vol.6, p.6841, 2015.

J. M. Brouwer, Bak core and latch domains separate during activation, and freed core domains form symmetric homodimers, Mol Cell, vol.55, pp.938-984, 2014.

P. E. Czabotar, Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis, Cell, vol.152, pp.519-550, 2013.

S. Bleicken, Structural model of active Bax at the membrane, Mol Cell, vol.56, pp.496-501, 2014.

Y. Subburaj, Bax monomers form dimer units in the membrane that further self-assemble into multiple oligomeric species, Nat Commun, vol.6, p.8042, 2015.

Z. Zhang, BH3-in-groove dimerization initiates and helix 9 dimerization expands Bax pore assembly in membranes, EMBO J, vol.35, pp.208-244, 2016.

S. Ma, Assembly of the Bak apoptotic pore: a critical role for the Bak protein alpha6 helix in the multimerization of homodimers during apoptosis, J Biol Chem, vol.288, pp.26027-26065, 2013.

G. Dewson, Bax dimerizes via a symmetric BH3:groove interface during apoptosis, Cell Death Differ, vol.19, pp.661-70, 2012.

K. J. Oh, Conformational changes in BAK, a pore-forming proapoptotic Bcl-2 family member, upon membrane insertion and direct evidence for the existence of BH3-BH3 contact interface in BAK homo-oligomers, J Biol Chem, vol.285, pp.28924-28961, 2010.

R. Salvador-gallego, Bax assembly into rings and arcs in apoptotic mitochondria is linked to membrane pores, EMBO J, vol.35, pp.389-401, 2016.

L. Grosse, Bax assembles into large ring-like structures remodeling the mitochondrial outer membrane in apoptosis

, EMBO J, vol.35, pp.402-415, 2016.

S. Aluvila, Organization of the mitochondrial apoptotic BAK pore: oligomerization of the BAK homodimers, J Biol Chem, vol.289, pp.2537-51, 2014.

L. A. Gillies, Visual and functional demonstration of growing Bax-induced pores in mitochondrial outer membranes, Mol Biol Cell, vol.26, pp.339-388, 2015.

J. M. Hardwick, Multiple functions of BCL-2 family proteins, Cold Spring Harb Perspect Biol, vol.5, p.8722, 2013.

L. A. Barclay, Inhibition of pro-apoptotic BAX by a noncanonical interaction mechanism, Mol Cell, vol.57, pp.873-86, 2015.

B. Antonsson, Inhibition of Bax channel-forming activity by Bcl-2, Science, vol.277, pp.370-72, 1997.

Z. N. Oltvai, Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death, Cell, vol.74, pp.609-628, 1993.

X. M. Yin, BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax, Nature, vol.369, pp.321-344, 1994.

K. L. O'neill, Inactivation of prosurvival Bcl-2 proteins activates Bax/Bak through the outer mitochondrial membrane, Genes Dev, vol.30, pp.973-88, 2016.

E. H. Cheng, BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX-and BAK-mediated mitochondrial apoptosis, Mol Cell, vol.8, pp.705-716, 2001.

Y. Rong, Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis, Annu Rev Physiol, vol.70, pp.73-91, 2008.

L. Scorrano, BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis, Science, vol.300, pp.135-174, 2003.

C. White, The endoplasmic reticulum gateway to apoptosis by Bcl-X(L) modulation of the InsP3R, Nat Cell Biol, vol.7, pp.1021-1049, 2005.

G. Monaco, The BH4 domain of anti-apoptotic Bcl-XL, but not that of the related Bcl-2, limits the voltage-dependent anion channel 1 (VDAC1)-mediated transfer of pro-apoptotic Ca2+ signals to mitochondria, J Biol Chem, vol.290, pp.9150-161, 2015.

T. Vervliet, Bcl-2 proteins and calcium signaling: complexity beneath the surface, Oncogene, vol.35, pp.5079-92, 2016.

Y. B. Chen, Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential, J Cell Biol, vol.195, pp.263-76, 2011.

D. R. Green, Cell biology. Metabolic control of cell death. Science, vol.345, p.1250256, 2014.

R. M. Perciavalle, Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration, Nat Cell Biol, vol.14, pp.575-83, 2012.

M. Bonora, Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition, Oncogene, vol.34, pp.1475-86, 2015.

K. N. Alavian, Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase, Nat Cell Biol, vol.13, pp.1224-1257, 2011.

Z. X. Chen, Bcl-2 induces pro-oxidant state by engaging mitochondrial respiration in tumor cells, Cell Death Differ, vol.14, pp.1617-1644, 2007.

M. V. Clement, Decrease in intracellular superoxide sensitizes Bcl-2-overexpressing tumor cells to receptor and druginduced apoptosis independent of the mitochondria, Cell Death Differ, vol.10, pp.1273-85, 2003.

Z. X. Chen, Involvement of cytochrome c oxidase subunits Va and Vb in the regulation of cancer cell metabolism by Bcl-2, Cell Death Differ, vol.17, pp.408-428, 2010.

I. C. Low, Ser70 phosphorylation of Bcl-2 by selective tyrosine nitration of PP2A-B56delta stabilizes its antiapoptotic activity, Blood, vol.124, pp.2223-2257, 2014.

R. Velaithan, The small GTPase Rac1 is a novel binding partner of Bcl-2 and stabilizes its antiapoptotic activity, Blood, vol.117, pp.6214-6240, 2011.

F. Llambi, A unified model of mammalian BCL-2 protein family interactions at the mitochondria, Mol Cell, vol.44, pp.517-548, 2011.

S. Bleicken, Quantitative interactome of a membrane Bcl-2 network identifies a hierarchy of complexes for apoptosis regulation, Nat Commun, vol.8, p.73, 2017.

E. F. Lee, Physiological restraint of Bak by Bcl-xL is essential for cell survival, Genes Dev, vol.30, pp.1240-50, 2016.

R. W. Birkinshaw, The BCL-2 family of proteins and mitochondrial outer membrane permeabilisation, Semin Cell Dev Biol, vol.72, pp.152-162, 2017.

P. D. Bhola, Mitochondria-Judges and executioners of cell death sentences, Mol Cell, vol.61, pp.695-704, 2016.

C. Hockings, Bid chimeras indicate that most BH3-only proteins can directly activate Bak and Bax, and show no preference for Bak versus Bax, Cell Death Dis, vol.6, p.1735, 2015.

H. Du, BH3 domains other than Bim and Bid can directly activate Bax/Bak, J Biol Chem, vol.286, pp.491-492, 2011.

D. Merino, The role of BH3-only protein Bim extends beyond inhibiting Bcl-2-like prosurvival proteins, J Cell Biol, vol.186, pp.355-62, 2009.

A. Kotschy, The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models, Nature, vol.538, pp.477-82, 2016.

A. W. Roberts, Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia, N Engl J Med, vol.374, pp.311-333, 2016.

D. R. Green, A BH3 mimetic for killing cancer cells, Cell, vol.165, p.1560, 2016.

A. Aranovich, Differences in the mechanisms of proapoptotic BH3 proteins binding to Bcl-XL and Bcl-2 quantified in live MCF-7 cells, Mol Cell, vol.45, pp.754-63, 2012.

J. Pecot, Tight sequestration of BH3 proteins by BCL-xL at subcellular membranes contributes to apoptotic resistance, Cell Rep, vol.17, p.3347, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01416194

F. Ke, Impact of the combined loss of BOK, BAX and BAK on the hematopoietic system is slightly more severe than compound loss of BAX and BAK, Cell Death Dis, vol.6, p.1938, 2015.

T. Lindsten, The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues, Mol Cell, vol.6, pp.1389-99, 2000.

V. Labi, Deregulated cell death and lymphocyte homeostasis cause premature lethality in mice lacking the BH3-only proteins Bim and Bmf, Blood, vol.123, pp.2652-62, 2014.

J. E. Chipuk, Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis, Science, vol.303, pp.1010-1024, 2004.

M. Mihara, p53 has a direct apoptogenic role at the mitochondria, Mol Cell, vol.11, pp.577-90, 2003.

A. V. Vaseva, The mitochondrial p53 pathway, Biochim Biophys Acta, vol.1787, pp.414-434, 2009.

A. V. Follis, Pin1-induced proline isomerization in cytosolic p53 mediates BAX activation and apoptosis, Mol Cell, vol.59, pp.677-84, 2015.

B. A. Hilton, ATR plays a direct antiapoptotic role at mitochondria, which is regulated by prolyl isomerase Pin1, Mol Cell, vol.60, pp.35-46, 2015.

A. Aouacheria, Redefining the BH3 death domain as a 'short linear motif, Trends Biochem Sci, vol.40, pp.736-784, 2015.

S. Iyer, Identification of an activation site in Bak and mitochondrial Bax triggered by antibodies, Nat Commun, vol.7, p.11734, 2016.

D. Redp, Mst1 promotes cardiac myocyte apoptosis through phosphorylation and inhibition of Bcl-xL, Mol Cell, vol.54, pp.639-50, 2014.

R. Dumitru, Human embryonic stem cells have constitutively active Bax at the Golgi and are primed to undergo rapid apoptosis, Mol Cell, vol.46, pp.573-83, 2012.

H. Inuzuka, SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction, Nature, vol.471, pp.104-113, 2011.

I. E. Wertz, Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7, Nature, vol.471, pp.110-124, 2011.

H. Puthalakath, Bmf: a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis, Science, vol.293, pp.1829-1861, 2001.

H. Puthalakath, The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex, Mol Cell, vol.3, pp.287-96, 1999.

A. Pyakurel, Extracellular regulated kinase phosphorylates mitofusin 1 to control mitochondrial morphology and apoptosis, Mol Cell, vol.58, pp.244-54, 2015.

T. T. Renault, Mitochondrial shape governs BAX-induced membrane permeabilization and apoptosis, Mol Cell, vol.57, pp.69-82, 2015.

D. Weaver, Distribution and apoptotic function of outer membrane proteins depend on mitochondrial fusion, Mol Cell, vol.54, pp.870-78, 2014.

L. Luo, Integration and oligomerization of Bax protein in lipid bilayers characterized by single molecule fluorescence study, J Biol Chem, vol.289, pp.31708-31726, 2014.

J. E. Chipuk, Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis, Cell, vol.148, pp.988-1000, 2012.

X. Wang, Bcl-2 proteins regulate ER membrane permeability to luminal proteins during ER stress-induced apoptosis, Cell Death Differ, vol.18, pp.38-47, 2011.

S. A. Oakes, Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum, Proc Natl Acad Sci, vol.102, pp.105-115, 2005.

M. L. Sassano, Mitochondria-associated membranes as networking platforms and regulators of cancer cell fate, Front Oncol, vol.7, p.174, 2017.

E. Y. Bassoy, ER-mitochondria contacts control surface glycan expression and sensitivity to killer lymphocytes in glioma stem-like cells, EMBO J, vol.36, pp.1493-512, 2017.

M. J. Phillips, Structure and function of ER membrane contact sites with other organelles, Nat Rev Mol Cell Biol, vol.17, pp.69-82, 2016.

N. Echeverry, Intracellular localization of the BCL-2 family member BOK and functional implications, Cell Death Differ, vol.20, pp.785-99, 2013.

M. A. Carpio, BCL-2 family member BOK promotes apoptosis in response to endoplasmic reticulum stress, Proc Natl Acad Sci U S A, vol.112, pp.7201-206, 2015.

Y. Fernandez-marrero, The membrane activity of BOK involves formation of large, stable toroidal pores and is promoted by cBID, FEBS J, vol.284, pp.711-735, 2017.

S. Einsele-scholz, Bok is a genuine multi-BH-domain protein that triggers apoptosis in the absence of Bax and Bak, J Cell Sci, vol.129, pp.2213-2236, 2016.

J. J. Schulman, The stability and expression level of Bok are governed by binding to inositol 1,4,5-trisphosphate receptors, J Biol Chem, vol.291, pp.11820-11848, 2016.

F. Ke, BCL-2 family member BOK is widely expressed but its loss has only minimal impact in mice, Cell Death Differ, vol.19, pp.915-940, 2012.

F. Ke, Consequences of the combined loss of BOK and BAK or BOK and BAX, Cell Death Dis, vol.4, p.650, 2013.

S. W. Tait, Mitochondrial regulation of cell death, Cold Spring Harb Perspect Biol, vol.5, p.8706, 2013.

L. Galluzzi, Non-apoptotic functions of apoptosisregulatory proteins, EMBO Rep, vol.13, pp.322-352, 2012.

X. Liu, Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c, Cell, vol.86, pp.147-57, 1996.

K. Li, Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis, Cell, vol.101, pp.389-99, 2000.

P. Li, Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade, Cell, vol.91, pp.479-89, 1997.

J. Chai, Structural and biochemical basis of apoptotic activation by Smac/DIABLO, Nature, vol.406, pp.855-62, 2000.

A. M. Verhagen, Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins, Cell, vol.102, pp.43-53, 2000.

C. Du, Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition, Cell, vol.102, pp.33-42, 2000.

L. Scorrano, A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis, Dev Cell, vol.2, pp.55-67, 2002.

C. Frezza, OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion, Cell, vol.126, pp.177-89, 2006.

X. Jiang, Activation of mitochondrial protease OMA1 by Bax and Bak promotes cytochrome c release during apoptosis, Proc Natl Acad Sci U S A, vol.111, pp.14782-787, 2014.

T. Varanita, The OPA1-dependent mitochondrial cristae remodeling pathway controls atrophic, apoptotic, and ischemic tissue damage, Cell Metab, vol.21, pp.834-878, 2015.

H. Otera, Drp1-dependent mitochondrial fission via MiD49/ 51 is essential for apoptotic cristae remodeling, J Cell Biol, vol.212, pp.531-575, 2016.

D. H. Cho, S-nitrosylation of Drp1 mediates beta-amyloidrelated mitochondrial fission and neuronal injury, Science, vol.324, pp.102-107, 2009.

M. J. Barsoum, Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons, EMBO J, vol.25, pp.3900-911, 2006.

H. Yuan, Mitochondrial fission is an upstream and required event for bax foci formation in response to nitric oxide in cortical neurons, Cell Death Differ, vol.14, pp.462-71, 2007.

T. C. Cheng, A near atomic structure of the active human apoptosome, Elife, vol.5, p.17755, 2016.

M. Zhou, Atomic structure of the apoptosome: mechanism of cytochrome c-and dATP-mediated activation of Apaf-1

, Genes Dev, vol.29, pp.2349-61, 2015.

Y. Pang, Structure of the apoptosome: mechanistic insights into activation of an initiator caspase from Drosophila, Genes Dev, vol.29, pp.277-87, 2015.

Q. Hu, Molecular determinants of caspase-9 activation by the Apaf-1 apoptosome, Proc Natl Acad Sci U S A, vol.111, pp.16254-61, 2014.

Y. Li, Mechanistic insights into caspase-9 activation by the structure of the apoptosome holoenzyme, Proc Natl Acad Sci, vol.114, pp.1542-1589, 2017.

C. C. Wu, The Apaf-1 apoptosome induces formation of caspase-9 homo-and heterodimers with distinct activities, Nat Commun, vol.7, p.13565, 2016.

S. J. Riedl, The apoptosome: signalling platform of cell death, Nat Rev Mol Cell Biol, vol.8, pp.405-418, 2007.

O. Julien, Caspases and their substrates, Cell Death Differ, vol.24, pp.1380-89, 2017.

S. Shalini, Old, new and emerging functions of caspases, Cell Death Differ, vol.22, pp.526-565, 2015.

G. S. Salvesen, IAP proteins: blocking the road to death's door, Nat Rev Mol Cell Biol, vol.3, pp.401-411, 2002.

L. Burri, Mature DIABLO/Smac is produced by the IMP protease complex on the mitochondrial inner membrane, Mol Biol Cell, vol.16, pp.2926-2959, 2005.

S. Saita, PARL mediates Smac proteolytic maturation in mitochondria to promote apoptosis, Nat Cell Biol, vol.19, pp.318-346, 2017.

B. P. Eckelman, The human anti-apoptotic proteins cIAP1 and cIAP2 bind but do not inhibit caspases, J Biol Chem, vol.281, pp.3254-60, 2006.

B. P. Eckelman, Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family, EMBO Rep, vol.7, pp.988-94, 2006.

J. Silke, Inhibitor of apoptosis (IAP) proteins-modulators of cell death and inflammation, Cold Spring Harb Perspect Biol, vol.5, p.8730, 2013.

M. Ditzel, Inactivation of effector caspases through nondegradative polyubiquitylation, Mol Cell, vol.32, pp.540-53, 2008.

T. V. Lee, Drosophila IAP1-mediated ubiquitylation controls activation of the initiator caspase DRONC independent of protein degradation, PLoS Genet, vol.7, p.1002261, 2011.

S. Lisi, Diverse domains of THREAD/DIAP1 are required to inhibit apoptosis induced by REAPER and HID in Drosophila, Genetics, vol.154, pp.669-78, 2000.

Y. Morizane, X-linked inhibitor of apoptosis functions as ubiquitin ligase toward mature caspase-9 and cytosolic Smac/ DIABLO, J Biochem, vol.137, pp.125-157, 2005.

A. J. Schile, Regulation of apoptosis by XIAP ubiquitinligase activity, Genes Dev, vol.22, pp.2256-66, 2008.

Y. Suzuki, Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death, Proc Natl Acad Sci U S A, vol.98, pp.8662-67, 2001.

R. Wilson, The DIAP1 RING finger mediates ubiquitination of Dronc and is indispensable for regulating apoptosis, Nat Cell Biol, vol.4, pp.445-50, 2002.

J. Chai, Molecular mechanism of Reaper-Grim-Hidmediated suppression of DIAP1-dependent Dronc ubiquitination, Nat Struct Biol, vol.10, pp.892-98, 2003.

K. Kaya and H. E. , An inhibitory mono-ubiquitylation of the Drosophila initiator caspase Dronc functions in both apoptotic and non-apoptotic pathways, PLoS Genet, vol.13, p.1006438, 2017.

E. Varfolomeev, c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation, J Biol Chem, vol.283, pp.24295-99, 2008.

R. Feltham, The small molecule that packs a punch: ubiquitin-mediated regulation of RIPK1/FADD/caspase-8 complexes, Cell Death Differ, vol.24, pp.1196-204, 2017.

A. Witt, Diverse ubiquitin linkages regulate RIP kinasesmediated inflammatory and cell death signaling, Cell Death Differ, vol.24, pp.1160-71, 2017.

A. Hamacher-brady, Bax/Bak-dependent, Drp1-independent targeting of X-linked inhibitor of apoptosis protein (XIAP) into inner mitochondrial compartments counteracts Smac/DIABLO-dependent effector caspase activation, J Biol Chem, vol.290, pp.22005-22023, 2015.

J. Nunnari, Mitochondria: in sickness and in health, Cell, vol.148, pp.1145-59, 2012.

N. Zamzami, Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo, J Exp Med, vol.181, pp.1661-72, 1995.

N. Zamzami, Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death, J Exp Med, vol.182, pp.367-77, 1995.

O. Schmidt, Mitochondrial protein import: from proteomics to functional mechanisms, Nat Rev Mol Cell Biol, vol.11, pp.655-67, 2010.

T. Mizuta, A Bax/Bak-independent mechanism of cytochrome c release, J Biol Chem, vol.282, pp.16623-16653, 2007.

S. Zamorano, A BAX/BAK and cyclophilin D-independent intrinsic apoptosis pathway, PLoS One, vol.7, p.37782, 2012.

M. Colombini, Ceramide channels and mitochondrial outer membrane permeability, J Bioenerg Biomembr, vol.49, pp.57-64, 2017.

L. J. Siskind, The lipids C2-and C16-ceramide form large stable channels. Implications for apoptosis, J Biol Chem, vol.275, pp.38640-38684, 2000.

S. Nagata, DNA degradation in development and programmed cell death, Annu Rev Immunol, vol.23, pp.853-75, 2005.

M. Naito, Phosphatidylserine externalization is a downstream event of interleukin-1 beta-converting enzyme family protease activation during apoptosis, Blood, vol.89, pp.2060-66, 1997.

S. J. Martin, Phosphatidylserine externalization during CD95-induced apoptosis of cells and cytoplasts requires ICE/ CED-3 protease activity, J Biol Chem, vol.271, pp.28753-56, 1996.

M. Sebbagh, Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing, Nat Cell Biol, vol.3, pp.346-52, 2001.

M. L. Coleman, Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I, Nat Cell Biol, vol.3, pp.339-384, 2001.

M. Enari, A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD, Nature, vol.391, pp.43-50, 1998.

K. Kawane, Impaired thymic development in mouse embryos deficient in apoptotic DNA degradation, Nat Immunol, vol.4, pp.138-182, 2003.

H. Sakahira, Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis, Nature, vol.391, pp.96-99, 1998.

J. Suzuki, Xkr8 phospholipid scrambling complex in apoptotic phosphatidylserine exposure, Proc Natl Acad Sci U S A, vol.113, pp.9509-9523, 2016.

J. Suzuki, Exposure of phosphatidylserine by Xk-related protein family members during apoptosis, J Biol Chem, vol.289, pp.30257-67, 2014.

J. Suzuki, Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells, Science, vol.341, pp.403-409, 2013.

K. Segawa, Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure, Science, vol.344, pp.1164-68, 2014.

K. Segawa, Human type IV P-type ATPases that work as plasma membrane phospholipid flippases and their regulation by caspase and calcium, J Biol Chem, vol.291, pp.762-72, 2016.

M. Yabas, Mice deficient in the putative phospholipid flippase ATP11C exhibit altered erythrocyte shape, anemia, and reduced erythrocyte life span, J Biol Chem, vol.289, pp.19531-19538, 2014.

B. Fadeel, Phosphatidylserine exposure during apoptosis is a cell-type-specific event and does not correlate with plasma membrane phospholipid scramblase expression, Biochem Biophys Res Commun, vol.266, pp.504-515, 1999.

X. Qu, Autophagy gene-dependent clearance of apoptotic cells during embryonic development, Cell, vol.128, pp.931-977, 2007.

M. A. Mellen, Autophagy is not universally required for phosphatidyl-serine exposure and apoptotic cell engulfment during neural development, Autophagy, vol.5, pp.964-72, 2009.

V. S. Marsden, Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome, Nature, vol.419, pp.634-671, 2002.

G. Ichim, Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death, Mol Cell, vol.57, pp.860-72, 2015.

G. Sun, A molecular signature for anastasis, recovery from the brink of apoptotic cell death, J Cell Biol, vol.216, pp.3355-68, 2017.

H. L. Tang, Cell survival, DNA damage, and oncogenic transformation after a transient and reversible apoptotic response

, Mol Biol Cell, vol.23, pp.2240-52, 2012.

I. Martins, Molecular mechanisms of ATP secretion during immunogenic cell death, Cell Death Differ, vol.21, pp.79-91, 2014.

Q. Huang, Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy, Nat Med, vol.17, pp.860-66, 2011.

D. C. Gray, Activation of specific apoptotic caspases with an engineered small-molecule-activated protease, Cell, vol.142, pp.637-683, 2010.

O. Julien, Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles, Proc Natl Acad Sci, vol.113, pp.2001-2011, 2016.

P. Paoli, Anoikis molecular pathways and its role in cancer progression, Biochim Biophys Acta, vol.1833, pp.3481-98, 2013.

C. L. Buchheit, Cancer cell survival during detachment from the ECM: multiple barriers to tumour progression, Nat Rev Cancer, vol.14, pp.632-673, 2014.

A. A. Mailleux, BIM regulates apoptosis during mammary ductal morphogenesis, and its absence reveals alternative cell death mechanisms, Dev Cell, vol.12, pp.221-255, 2007.

C. L. Buchheit, The regulation of cancer cell death and metabolism by extracellular matrix attachment, Semin Cell Dev Biol, vol.23, pp.402-413, 2012.

R. R. Rayavarapu, The role of multicellular aggregation in the survival of ErbB2-positive breast cancer cells during extracellular matrix detachment, J Biol Chem, vol.290, pp.8722-8755, 2015.

C. L. Buchheit, Anoikis evasion in inflammatory breast cancer cells is mediated by Bim-EL sequestration, Cell Death Differ, vol.22, pp.1275-86, 2015.

C. D. Simpson, Inhibition of the sodium potassium adenosine triphosphatase pump sensitizes cancer cells to anoikis and prevents distant tumor formation, Cancer Res, vol.69, pp.2739-2786, 2009.

T. De-la-motte-rouge, A novel epidermal growth factor receptor inhibitor promotes apoptosis in non-small cell lung cancer cells resistant to erlotinib, Cancer Res, vol.67, pp.6253-62, 2007.

X. Hu, CCDC178 promotes hepatocellular carcinoma metastasis through modulation of anoikis, Oncogene, vol.36, pp.4047-59, 2017.

K. Zhang, Oncogenic K-Ras upregulates ITGA6 expression via FOSL1 to induce anoikis resistance and synergizes with alphaV-Class integrins to promote EMT, Oncogene, vol.36, pp.5681-5694, 2017.

K. J. Weigel, CAF-secreted IGFBPs regulate breast cancer cell anoikis, Mol Cancer Res, vol.12, pp.855-66, 2014.

J. Xu, Hepatitis B virus X protein confers resistance of hepatoma cells to anoikis by up-regulating and activating p21-activated kinase 1, Gastroenterology, vol.143, pp.199-212, 2012.

X. Li, Aiolos promotes anchorage independence by silencing p66Shc transcription in cancer cells, Cancer Cell, vol.25, pp.575-89, 2014.

J. Alanko, Integrin endosomal signalling suppresses anoikis, Nat Cell Biol, vol.17, pp.1412-1433, 2015.

B. Aslan, The ZNF304-integrin axis protects against anoikis in cancer, Nat Commun, vol.6, p.7351, 2015.

M. Vivo, p14ARF interacts with the focal adhesion kinase and protects cells from anoikis, Oncogene, vol.36, pp.4913-4941, 2017.

Y. Zheng, Protein tyrosine kinase 6 protects cells from anoikis by directly phosphorylating focal adhesion kinase and activating AKT, Oncogene, vol.32, pp.4304-4316, 2013.

S. M. Frisch, Mechanisms that link the oncogenic epithelialmesenchymal transition to suppression of anoikis, J Cell Sci, vol.126, pp.21-30, 2013.

I. Amelio, Exploiting tumour addiction with a serine and glycine-free diet, Cell Death Differ, vol.24, pp.1311-1324, 2017.

S. J. Yu, MicroRNA-200a promotes anoikis resistance and metastasis by targeting YAP1 in human breast cancer, Clin Cancer Res, vol.19, pp.1389-99, 2013.

M. Haemmerle, Platelets reduce anoikis and promote metastasis by activating YAP1 signaling, Nat Commun, vol.8, p.310, 2017.

S. Dey, ATF4-dependent induction of heme oxygenase 1 prevents anoikis and promotes metastasis, J Clin Invest, vol.125, pp.2592-608, 2015.

Q. Cai, Anoikis resistance is a critical feature of highly aggressive ovarian cancer cells, Oncogene, vol.34, pp.3315-3339, 2015.

D. Malin, ERK-regulated alphaB-crystallin induction by matrix detachment inhibits anoikis and promotes lung metastasis in vivo, Oncogene, vol.34, pp.5626-5660, 2015.

A. Sundararaman, Calcium-oxidant signaling network regulates AMP-activated protein kinase (AMPK) activation upon matrix deprivation, J Biol Chem, vol.291, pp.14410-14439, 2016.

Y. H. Liao, Epidermal growth factor-induced ANGPTL4 enhances anoikis resistance and tumour metastasis in head and neck squamous cell carcinoma, Oncogene, vol.36, pp.2228-2270, 2017.

N. M. Fofaria, STAT3 induces anoikis resistance, promotes cell invasion and metastatic potential in pancreatic cancer cells, Carcinogenesis, vol.36, pp.142-50, 2015.

Z. T. Schafer, Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment, Nature, vol.461, pp.109-122, 2009.

L. Jiang, Reductive carboxylation supports redox homeostasis during anchorage-independent growth, Nature, vol.532, pp.255-58, 2016.

L. G. Yu, Cancer cell resistance to anoikis: MUC1 glycosylation comes to play, Cell Death Dis, vol.8, p.2962, 2017.

J. A. Mason, Metabolism during ECM Detachment: Achilles Heel of Cancer Cells? Trends Cancer, vol.3, pp.475-81, 2017.

T. Piyush, MUC1 O-glycosylation contributes to anoikis resistance in epithelial cancer cells, Cell Death Discov, vol.3, p.17044, 2017.

A. Ashkenazi, Death receptors: signaling and modulation, Science, vol.281, pp.1305-1313, 1998.

D. A. Flusberg, Surviving apoptosis: life-death signaling in single cells, Trends Cell Biol, vol.25, pp.446-58, 2015.

B. Gibert, Dependence receptors and cancer: addiction to trophic ligands, Cancer Res, vol.75, pp.5171-75, 2015.

A. Strasser, The many roles of FAS receptor signaling in the immune system, Immunity, vol.30, pp.180-92, 2009.

B. B. Aggarwal, Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey, Blood, vol.119, pp.651-65, 2012.

H. Wajant, The Fas signaling pathway: more than a paradigm, Science, vol.296, pp.1635-1671, 2002.

P. Mehlen, Dependence receptors: from basic research to drug development, Sci Signal, vol.4, p.2, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00850822

S. Von-karstedt, Exploring the TRAILs less travelled: TRAIL in cancer biology and therapy, Nat Rev Cancer, vol.17, pp.352-66, 2017.

K. G. Fleten, hvTRA, a novel TRAIL receptor agonist, induces apoptosis and sustained growth retardation in melanoma, Cell Death Discov, vol.2, p.16081, 2016.

M. P. Boldin, Involvement of MACH, a novel MORT1/ FADD-interacting protease, in Fas/APO-1-and TNF receptorinduced cell death, Cell, vol.85, pp.803-818, 1996.

L. S. Dickens, The 'complexities' of life and death: death receptor signalling platforms, Exp Cell Res, vol.318, pp.1269-77, 2012.

M. Muzio, FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death--inducing signaling complex, Cell, vol.85, pp.817-844, 1996.

M. P. Boldin, A novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain, J Biol Chem, vol.270, pp.7795-98, 1995.

A. M. Chinnaiyan, FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis, Cell, vol.81, pp.505-517, 1995.

F. C. Kischkel, Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5, Immunity, vol.12, pp.611-631, 2000.

F. L. Scott, The Fas-FADD death domain complex structure unravels signalling by receptor clustering, Nature, vol.457, pp.1019-1041, 2009.

F. K. Chan, A domain in TNF receptors that mediates ligandindependent receptor assembly and signaling, Science, vol.288, pp.2351-54, 2000.

Q. Fu, Structural basis and functional role of intramembrane trimerization of the Fas/CD95 death receptor, Mol Cell, vol.61, pp.602-615, 2016.

D. Brenner, Regulation of tumour necrosis factor signalling: live or let die, Nat Rev Immunol, vol.15, pp.362-74, 2015.

O. Micheau, Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes, Cell, vol.114, pp.181-90, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00527105

A. T. Ting, More to life than NF-kappaB in TNFR1 signaling, Trends Immunol, vol.37, pp.535-580, 2016.

E. Lafont, The linear ubiquitin chain assembly complex regulates TRAIL-induced gene activation and cell death, EMBO J, vol.36, pp.1147-66, 2017.

Z. G. Liu, Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death, Cell, vol.87, pp.565-76, 1996.

M. A. Toscano, Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death, Nat Immunol, vol.8, pp.825-859, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00199622

R. G. Lichtenstein, Glycobiology of cell death: when glycans and lectins govern cell fate, Cell Death Differ, vol.20, pp.976-86, 2013.

P. Matarrese, Galectin-1 sensitizes resting human T lymphocytes to Fas (CD95)-mediated cell death via mitochondrial hyperpolarization, budding, and fission, J Biol Chem, vol.280, pp.6969-85, 2005.

T. M. Fu, Cryo-EM Structure of caspase-8 tandem DED filament reveals assembly and regulation mechanisms of the death-inducing signaling complex, Mol Cell, vol.64, pp.236-50, 2016.

L. S. Dickens, A death effector domain chain DISC model reveals a crucial role for caspase-8 chain assembly in mediating apoptotic cell death, Mol Cell, vol.47, pp.291-305, 2012.

K. Schleich, Stoichiometry of the CD95 death-inducing signaling complex: experimental and modeling evidence for a death effector domain chain model, Mol Cell, vol.47, pp.306-325, 2012.

A. Oberst, Inducible dimerization and inducible cleavage reveal a requirement for both processes in caspase-8 activation, J Biol Chem, vol.285, pp.16632-16674, 2010.

S. M. Kallenberger, Intra-and interdimeric caspase-8 selfcleavage controls strength and timing of CD95-induced apoptosis, Sci Signal, vol.7, p.23, 2014.

W. C. Yeh, Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development, Immunity, vol.12, pp.633-675, 2000.

C. Scaffidi, The role of c-FLIP in modulation of CD95-induced apoptosis, J Biol Chem, vol.274, pp.1541-1589, 1999.

S. M. Kavuri, Cellular FLICE-inhibitory protein (cFLIP) isoforms block CD95-and TRAIL death receptor-induced gene induction irrespective of processing of caspase-8 or cFLIP in the death-inducing signaling complex, J Biol Chem, vol.286, pp.16631-16677, 2011.

N. Fricker, Model-based dissection of CD95 signaling dynamics reveals both a pro-and antiapoptotic role of c-FLIPL, J Cell Biol, vol.190, pp.377-89, 2010.

O. Micheau, The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex, J Biol Chem, vol.277, pp.45162-71, 2002.

M. A. Hughes, Co-operative and hierarchical binding of c-FLIP and caspase-8: a unified model defineshow c-FLIP isoforms differentially control cell fate, Mol Cell, vol.61, pp.834-883, 2016.

A. Koenig, The c-FLIPL cleavage product p43FLIP promotes activation of extracellular signal-regulated kinase (ERK), nuclear factor kappaB (NF-kappaB), and caspase-8 and T cell survival, J Biol Chem, vol.289, pp.1183-91, 2014.

J. Majkut, Differential affinity of FLIP and procaspase 8 for FADD's DED binding surfaces regulates DISC assembly, Nat Commun, vol.5, p.3350, 2014.

K. Schleich, Molecular architecture of the DED chains at the DISC: regulation of procaspase-8 activation by short DED proteins c-FLIP and procaspase-8 prodomain, Cell Death Differ, vol.23, pp.681-94, 2016.

Z. You, Nuclear factor-kappa B-inducible death effector domain-containing protein suppresses tumor necrosis factormediated apoptosis by inhibiting caspase-8 activity, J Biol Chem, vol.276, pp.26398-404, 2001.

I. R. Powley, Caspase-8 tyrosine-380 phosphorylation inhibits CD95 DISC function by preventing procaspase-8 maturation and cycling within the complex, Oncogene, vol.35, pp.5629-5669, 2016.

C. Helmke, Ligand stimulation of CD95 induces activation of Plk3 followed by phosphorylation of caspase-8, Cell Res, vol.26, pp.914-948, 2016.

B. C. Barnhart, The CD95 type I/type II model, Semin Immunol, vol.15, pp.185-93, 2003.

A. Strasser, Bcl-2 and Fas/APO-1 regulate distinct pathways to lymphocyte apoptosis, EMBO J, vol.14, pp.6136-6183, 1995.

P. J. Jost, XIAP discriminates between type I and type II FAS-induced apoptosis, Nature, vol.460, pp.1035-1074, 2009.

X. M. Yin, Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis, Nature, vol.400, pp.886-91, 1999.

H. Li, Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis, Cell, vol.94, pp.491-501, 1998.

A. Gross, Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death, J Biol Chem, vol.274, pp.1156-63, 1999.

K. Huang, Cleavage by caspase 8 and mitochondrial membrane association activate the BH3-only protein Bid during TRAIL-induced apoptosis, J Biol Chem, vol.291, pp.11843-851, 2016.

C. T. Tan, MOAP-1 mediates Fas-induced apoptosis in liver by facilitating tBid recruitment to mitochondria, Cell Rep, vol.16, pp.174-85, 2016.

Y. Zaltsman, MTCH2/MIMP is a major facilitator of tBID recruitment to mitochondria, Nat Cell Biol, vol.12, pp.553-62, 2010.

U. Fischer, Unique and overlapping substrate specificities of caspase-8 and caspase-10, Oncogene, vol.25, pp.152-59, 2006.

K. M. Backus, Proteome-wide covalent ligand discovery in native biological systems, Nature, vol.534, pp.570-74, 2016.

S. Horn, Caspase-10 negatively regulates caspase-8-mediated cell death, switching the response to CD95L in favor of NF-kappaB activation and cell survival, Cell Rep, vol.19, pp.785-97, 2017.

M. C. Tanzer, Combination of IAP antagonist and IFNgamma activates novel caspase-10-and RIPK1-dependent cell death pathways, Cell Death Differ, vol.24, pp.481-91, 2017.

M. R. Sprick, Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signalling complexes in a FADD-dependent manner but can not functionally substitute caspase-8, EMBO J, vol.21, pp.4520-4550, 2002.

D. Kranz, A synthetic lethal screen identifies FAT1 as an antagonist of caspase-8 in extrinsic apoptosis, EMBO J, vol.33, pp.181-97, 2014.

M. A. O'donnell, Ubiquitination of RIP1 regulates an NF-kappaB-independent cell-death switch in TNF signaling, Curr Biol, vol.17, pp.418-442, 2007.

H. Li, Ubiquitination of RIP is required for tumor necrosis factor alpha-induced NF-kappaB activation, J Biol Chem, vol.281, pp.13636-13679, 2006.

B. Gerlach, Linear ubiquitination prevents inflammation and regulates immune signalling, Nature, vol.471, pp.591-96, 2011.

C. K. Ea, Activation of IKK by TNFalpha requires sitespecific ubiquitination of RIP1 and polyubiquitin binding by NEMO, Mol Cell, vol.22, pp.245-57, 2006.

M. J. Bertrand, cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination, Mol Cell, vol.30, pp.689-700, 2008.

N. Peltzer, Holding RIPK1 on the ubiquitin leash in TNFR1 signaling, Trends Cell Biol, vol.26, pp.445-61, 2016.

T. L. Haas, Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction, Mol Cell, vol.36, pp.831-875, 2009.

J. A. Didonato, A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB, Nature, vol.388, pp.548-54, 1997.

E. Zandi, Direct phosphorylation of IkappaB by IKKalpha and IKKbeta: discrimination between free and NF-kappaBbound substrate, Science, vol.281, pp.1360-63, 1998.

D. M. Rothwarf, IKK-gamma is an essential regulatory subunit of the IkappaB kinase complex, Nature, vol.395, pp.297-300, 1998.

E. Zandi, The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation, Cell, vol.91, pp.243-52, 1997.

J. Geng, Regulation of RIPK1 activation by TAK1-mediated phosphorylation dictates apoptosis and necroptosis, Nat Commun, vol.8, p.359, 2017.

Y. Dondelinger, NF-kappaB-independent role of IKKalpha/ IKKbeta in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during TNF signaling, Mol Cell, vol.60, pp.63-76, 2015.

I. Jaco, MK2 phosphorylates RIPK1 to prevent TNFinduced cell death, Mol Cell, vol.66, pp.698-710, 2017.

S. Fulda, Targeting IAP proteins for therapeutic intervention in cancer, Nat Rev Drug Discov, vol.11, pp.109-133, 2012.

J. Hitomi, Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway, Cell, vol.135, pp.1311-1334, 2008.

L. Tortola, The tumor suppressor Hace1 is a critical regulator of TNFR1-mediated cell fate, Cell Rep, vol.15, pp.1481-92, 2016.

A. T. Schneider, RIPK1 suppresses a TRAF2-dependent pathway to liver cancer, Cancer Cell, vol.31, pp.94-109, 2017.

I. E. Gentle, TNF-stimulated cells, RIPK1 promotes cell survival by stabilizing TRAF2 and cIAP1, which limits induction of non-canonical NF-kappaB and activation of caspase-8, J Biol Chem, vol.286, pp.13282-91, 2011.

M. Nguyen-chi, TNF signaling and macrophages govern fin regeneration in zebrafish larvae, Cell Death Dis, vol.8, p.2979, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02086729

L. A. O'-reilly, Membrane-bound Fas ligand only is essential for Fas-induced apoptosis, Nature, vol.461, pp.659-63, 2009.

C. M. Henry, Caspase-8 acts in a non-enzymatic role as a scaffold for assembly of a pro-inflammatory "FADDosome" complex upon TRAIL stimulation, Mol Cell, vol.65, pp.715-744, 2017.

N. Peltzer, HOIP deficiency causes embryonic lethality by aberrant TNFR1-mediated endothelial cell death, Cell Rep, vol.9, pp.153-65, 2014.

A. C. Bellail, A20 ubiquitin ligase-mediated polyubiquitination of RIP1 inhibits caspase-8 cleavage and TRAILinduced apoptosis in glioblastoma, Cancer Discov, vol.2, pp.140-55, 2012.

M. Lork, A20 and OTULIN deubiquitinases in NF-kappaB signaling and cell death: so similar, yet so different, Cell Death Differ, vol.24, pp.1172-83, 2017.

Y. Shlyakhtina, Dual role of DR5 in death and survival signaling leads to TRAIL resistance in cancer cells, Cell Death and Disease, vol.8, p.3025, 2017.

D. Goldschneider, Dependence receptors: a new paradigm in cell signaling and cancer therapy, Oncogene, vol.29, pp.1865-82, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00474454

P. Mehlen, Dependence receptors and colorectal cancer, Gut, vol.63, pp.1821-1850, 2014.

J. Liu, Mediation of the DCC apoptotic signal by DIP13 alpha, J Biol Chem, vol.277, pp.26281-26286, 2002.

O. Joubert, Functional studies of membrane-bound and purified human Hedgehog receptor Patched expressed in yeast, Biochim Biophys Acta, vol.1788, pp.1813-1834, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00408814

J. Fombonne, Patched dependence receptor triggers apoptosis through ubiquitination of caspase-9, Proc Natl Acad Sci U S A, vol.109, pp.10510-10525, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00721053

F. Mille, The Patched dependence receptor triggers apoptosis through a DRAL-caspase-9 complex, Nat Cell Biol, vol.11, pp.739-785, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00405390

F. Llambi, The dependence receptor UNC5H2 mediates apoptosis through DAP-kinase, EMBO J, vol.24, pp.1192-201, 2005.

C. Guenebeaud, The dependence receptor UNC5H2/B triggers apoptosis via PP2A-mediated dephosphorylation of DAP kinase, Mol Cell, vol.40, pp.863-76, 2010.

T. Raveh, DAP kinase activates a p19ARF/p53-mediated apoptotic checkpoint to suppress oncogenic transformation, Nat Cell Biol, vol.3, pp.1-7, 2001.

Y. Zhu, Dependence receptor UNC5D mediates nerve growth factor depletion-induced neuroblastoma regression, J Clin Invest, vol.123, pp.2935-2982, 2013.

G. Ichim, The dependence receptor TrkC triggers mitochondria-dependent apoptosis upon Cobra-1 recruitment, Mol Cell, vol.51, pp.632-678, 2013.

J. Fitamant, Netrin-1 expression confers a selective advantage for tumor cell survival in metastatic breast cancer, Proc Natl Acad Sci U S A, vol.105, pp.4850-55, 2008.

M. Grandin, Structural decoding of the Netrin-1/UNC5 interaction and its therapeutical implications in cancers, Cancer Cell, vol.29, pp.173-85, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01792608

P. N. Harter, Netrin-1 expression is an independent prognostic factor for poor patient survival in brain metastases, PLoS One, vol.9, p.92311, 2014.

A. Bernet, Inactivation of the UNC5C Netrin-1 receptor is associated with tumor progression in colorectal malignancies, Gastroenterology, vol.133, pp.1840-1888, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00475912

M. Castets, DCC constrains tumour progression via its dependence receptor activity, Nature, vol.482, pp.534-571, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00721045

P. Krimpenfort, Deleted in colorectal carcinoma suppresses metastasis in p53-deficient mammary tumours, Nature, vol.482, pp.538-579, 2012.

L. Broutier, Targeting netrin-1/DCC interaction in diffuse large B-cell and mantle cell lymphomas, EMBO Mol Med, vol.8, pp.96-104, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01269905

M. M. Coissieux, Variants in the netrin-1 receptor UNC5C prevent apoptosis and increase risk of familial colorectal cancer, Gastroenterology, vol.141, pp.2039-2085, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00730802

A. L. Genevois, Dependence receptor TrkC is a putative colon cancer tumor suppressor, Proc Natl Acad Sci U S A, vol.110, pp.3017-3039, 2013.

Y. Luo, NTRK3 is a potential tumor suppressor gene commonly inactivated by epigenetic mechanisms in colorectal cancer, PLoS Genet, vol.9, p.1003552, 2013.

M. Grandin, Inhibition of DNA methylation promotes breast tumor sensitivity to netrin-1 interference, EMBO Mol Med, vol.8, pp.863-77, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01792610

K. Ruckdeschel, Signaling of apoptosis through TLRs critically involves toll/IL-1 receptor domain-containing adapter inducing IFN-beta, but not MyD88, in bacteria-infected murine macrophages, J Immunol, vol.173, pp.3320-3348, 2004.

W. J. Kaiser, Apoptosis induced by the toll-like receptor adaptor TRIF is dependent on its receptor interacting protein homotypic interaction motif, J Immunol, vol.174, pp.4942-52, 2005.

V. Izzo, Mitochondrial permeability transition: new findings and persisting uncertainties, Trends Cell Biol, vol.26, pp.655-67, 2016.

V. Berghe and T. , Regulated necrosis: the expanding network of non-apoptotic cell death pathways, Nat Rev Mol Cell Biol, vol.15, pp.135-182, 2014.

V. Giorgio, Calcium and regulation of the mitochondrial permeability transition, Cell Calcium, 2017.

C. P. Baines, Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death, Nature, vol.434, pp.658-62, 2005.

T. Nakagawa, Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death, Nature, vol.434, pp.652-660, 2005.

E. Basso, Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D, J Biol Chem, vol.280, pp.18558-61, 2005.

A. C. Schinzel, Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia, Proc Natl Acad Sci, vol.102, pp.12005-12015, 2005.

R. Mukherjee, Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: inhibition prevents acute pancreatitis by protecting production of ATP, Gut, vol.65, pp.1333-1379, 2016.

J. Q. Kwong, Physiological and pathological roles of the mitochondrial permeability transition pore in the heart, Cell Metab, vol.21, pp.206-220, 2015.

S. J. Clarke, Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A, J Biol Chem, vol.277, pp.34793-99, 2002.

S. Jang, Elucidating mitochondrial electron transport chain supercomplexes in the heart during ischemia-reperfusion. Antioxid Redox Signal, vol.27, pp.57-69, 2017.

J. Warne, Selective inhibition of the mitochondrial permeability transition pore protects against neurodegeneration in experimental multiple sclerosis, J Biol Chem, vol.291, pp.4356-73, 2016.

C. K. Lam, HAX-1 regulates cyclophilin-D levels and mitochondria permeability transition pore in the heart, Proc Natl Acad Sci U S A, vol.112, pp.6466-75, 2015.

C. Piot, Effect of cyclosporine on reperfusion injury in acute myocardial infarction, N Engl J Med, vol.359, pp.473-81, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00443408

T. T. Cung, Cyclosporine before PCI in Patients with Acute Myocardial Infarction, N Engl J Med, vol.373, pp.1021-1052, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01260566

A. Linkermann, Catch me if you can: targeting the mitochondrial permeability transition pore in myocardial infarction, Cell Death Differ, vol.23, pp.1-2, 2016.

J. Q. Kwong, Genetic deletion of the mitochondrial phosphate carrier desensitizes the mitochondrial permeability transition pore and causes cardiomyopathy, Cell Death Differ, vol.21, pp.1209-1226, 2014.

J. E. Kokoszka, The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore, Nature, vol.427, pp.461-65, 2004.

C. P. Baines, Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death, Nat Cell Biol, vol.9, pp.550-55, 2007.

L. Galluzzi, Mitochondrial apoptosis without VDAC, Nat Cell Biol, vol.9, pp.487-89, 2007.

J. V. Brower, Evolutionarily conserved mammalian adenine nucleotide translocase 4 is essential for spermatogenesis, J Biol Chem, vol.282, pp.29658-66, 2007.

N. Rodic, DNA methylation is required for silencing of ant4, an adenine nucleotide translocase selectively expressed in mouse embryonic stem cells and germ cells, Stem Cells, vol.23, pp.1314-1337, 2005.

K. N. Alavian, An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore, Proc Natl Acad Sci, vol.111, pp.10580-10585, 2014.

M. Bonora, Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition, Cell Cycle, vol.12, pp.674-83, 2013.

M. Bonora, Mitochondrial permeability transition involves dissociation of F1FO ATP synthase dimers and C-ring conformation, EMBO Rep, vol.18, pp.1077-89, 2017.

P. A. Elustondo, Mitochondrial permeability transition pore induction is linked to formation of the complex of ATPase Csubunit, polyhydroxybutyrate and inorganic polyphosphate, Cell Death Discov, vol.2, p.16070, 2016.

V. Giorgio, Dimers of mitochondrial ATP synthase form the permeability transition pore, Proc Natl Acad Sci U S A, vol.110, pp.5887-92, 2013.

V. Giorgio, Ca2+ binding to F-ATP synthase beta subunit triggers the mitochondrial permeability transition, EMBO Rep, vol.18, pp.1065-76, 2017.

V. Giorgio, Cyclophilin D modulates mitochondrial F0F1-ATP synthase by interacting with the lateral stalk of the complex, J Biol Chem, vol.284, pp.33982-33990, 2009.

C. Gerle, On the structural possibility of pore-forming mitochondrial FoF1 ATP synthase, Biochim Biophys Acta, vol.1857, pp.1191-1197, 2016.

J. He, Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase, Proc Natl Acad Sci, vol.114, pp.3409-3423, 2017.

W. Zhou, Atomistic simulations indicate the c-subunit ring of the F1Fo ATP synthase is not the mitochondrial permeability transition pore, Elife, vol.6, p.23781, 2017.

J. He, Permeability transition in human mitochondria persists in the absence of peripheral stalk subunits of ATP synthase, Proc Natl Acad Sci, vol.114, pp.9086-91, 2017.

S. Shanmughapriya, SPG7 is an essential and conserved component of the mitochondrial permeability transition pore, Mol Cell, vol.60, pp.47-62, 2015.

J. Karch, Bax and Bak function as the outer membrane component of the mitochondrial permeability pore in regulating necrotic cell death in mice, Elife, vol.2, p.772, 2013.

R. S. Whelan, Bax regulates primary necrosis through mitochondrial dynamics, Proc Natl Acad Sci U S A, vol.109, pp.6566-71, 2012.

I. Marzo, Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis, Science, vol.281, pp.2027-2058, 1998.

N. Zamzami, Bid acts on the permeability transition pore complex to induce apoptosis, Oncogene, vol.19, pp.6342-50, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01608632

M. G. Vander-heiden, Bcl-xL promotes the open configuration of the voltage-dependent anion channel and metabolite passage through the outer mitochondrial membrane, J Biol Chem, vol.276, pp.19414-19423, 2001.

S. Shimizu, Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC, Nature, vol.399, pp.483-490, 1999.

Y. Tsujimoto, Bcl-2 and Bcl-xL block apoptosis as well as necrosis: possible involvement of common mediators in apoptotic and necrotic signal transduction pathways, Leukemia, vol.11, issue.3, pp.380-382, 1997.

M. G. Vander-heiden, Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ ADP exchange, Mol Cell, vol.3, pp.159-67, 1999.

S. Xu, CaMKII induces permeability transition through Drp1 phosphorylation during chronic beta-AR stimulation, Nat Commun, vol.7, p.13189, 2016.

A. V. Vaseva, p53 opens the mitochondrial permeability transition pore to trigger necrosis, Cell, vol.149, pp.1536-1584, 2012.

A. N. Antony, MICU1 regulation of mitochondrial Ca(2+) uptake dictates survival and tissue regeneration, Nat Commun, vol.7, p.10955, 2016.

T. Konig, The m-AAA protease associated with neurodegeneration limits MCU activity in mitochondria, Mol Cell, vol.64, pp.148-62, 2016.

T. S. Luongo, The mitochondrial calcium uniporter matches energetic supply with cardiac workload during stress and modulates permeability transition, Cell Rep, vol.12, pp.23-34, 2015.

T. S. Luongo, The mitochondrial Na+/Ca2+ exchanger is essential for Ca2+ homeostasis and viability, Nature, vol.545, pp.93-97, 2017.

L. Fazal, Multifunctional mitochondrial Epac1 controls myocardial cell death, Circ Res, vol.120, pp.645-57, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01831264

Z. Wang, A cardiac mitochondrial cAMP signaling pathway regulates calcium accumulation, permeability transition and cell death, Cell Death Dis, vol.7, p.2198, 2016.

D. Vercammen, Tumour necrosis factor-induced necrosis versus anti-Fas-induced apoptosis in L929 cells, Cytokine, vol.9, pp.801-809, 1997.

D. Vercammen, Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways, J Exp Med, vol.188, pp.919-949, 1998.

A. Degterev, Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury, Nat Chem Biol, vol.1, pp.112-131, 2005.

L. Galluzzi, Molecular mechanisms of regulated necrosis, Semin Cell Dev Biol, vol.35, pp.24-32, 2014.

A. Degterev, Identification of RIP1 kinase as a specific cellular target of necrostatins, Nat Chem Biol, vol.4, pp.313-334, 2008.

W. J. Kaiser, Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL, J Biol Chem, vol.288, pp.31268-79, 2013.

J. W. Upton, DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA, Cell Host Microbe, vol.11, pp.290-97, 2012.

J. W. Upton, Virus inhibition of RIP3-dependent necrosis, Cell Host Microbe, vol.7, pp.302-315, 2010.

A. Kaczmarek, Necroptosis: the release of damageassociated molecular patterns and its physiological relevance, Immunity, vol.38, pp.209-232, 2013.

X. Zhang, MLKL and FADD are critical for suppressing progressive lymphoproliferative disease and activating the NLRP3 inflammasome, Cell Rep, vol.16, pp.3247-59, 2016.

L. Dara, Questions and controversies: the role of necroptosis in liver disease, Cell Death Discov, vol.2, p.16089, 2016.

A. Linkermann, N Engl J Med, vol.370, pp.455-65, 2014.

J. M. Murphy, The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism, Immunity, vol.39, pp.443-53, 2013.

P. Vandenabeele, The role of the kinases RIP1 and RIP3 in TNF-induced necrosis, Sci Signal, vol.3, p.4, 2010.

J. Li, The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis, Cell, vol.150, pp.339-50, 2012.

Y. S. Cho, Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation, Cell, vol.137, pp.1112-1135, 2009.

J. Maelfait, Sensing of viral and endogenous RNA by ZBP1/DAI induces necroptosis, EMBO J, vol.36, pp.2529-2572, 2017.

J. Lin, RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation, Nature, vol.540, pp.124-152, 2016.

K. Newton, RIPK1 inhibits ZBP1-driven necroptosis during development, Nature, vol.540, pp.129-162, 2016.

L. Sun, Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase, Cell, vol.148, pp.213-240, 2012.

J. Zhao, Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis, Proc Natl Acad Sci, vol.109, pp.5322-5329, 2012.

D. A. Rodriguez, Characterization of RIPK3-mediated phosphorylation of the activation loop of MLKL during necroptosis, Cell Death Differ, vol.23, pp.76-88, 2016.

J. Wu, Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis, Cell Res, vol.23, pp.994-1006, 2013.

Q. Remijsen, Depletion of RIPK3 or MLKL blocks TNFdriven necroptosis and switches towards a delayed RIPK1 kinase-dependent apoptosis, Cell Death Dis, vol.5, p.1004, 2014.

K. Newton, Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis, Science, vol.343, pp.1357-60, 2014.

H. Wang, Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3, Mol Cell, vol.54, pp.133-179, 2014.

Z. Cai, Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis, Nat Cell Biol, vol.16, pp.55-65, 2014.

X. Chen, Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death, Cell Res, vol.24, pp.105-126, 2014.

J. M. Hildebrand, Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death, Proc Natl Acad Sci, vol.111, pp.15072-77, 2014.

G. Quarato, Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death, Mol Cell, vol.61, pp.589-601, 2016.

Y. Dondelinger, MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates, Cell Rep, vol.7, pp.971-81, 2014.

X. M. Zhao, Hsp90 modulates the stability of MLKL and is required for TNF-induced necroptosis, Cell Death Dis, vol.7, p.2089, 2016.

A. V. Jacobsen, HSP90 activity is required for MLKL oligomerisation and membrane translocation and the induction of necroptotic cell death, Cell Death Dis, vol.7, p.2051, 2016.

Y. N. Gong, ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences, Cell, vol.169, pp.286-300, 2017.

S. Yoon, MLKL, the protein that mediates necroptosis, also regulates endosomal trafficking and extracellular vesicle generation, Immunity, vol.47, pp.51-65, 2017.

Z. Cai, Activation of cell-surface proteases promotes necroptosis, inflammation and cell migration, Cell Res, vol.26, pp.886-900, 2016.

B. Xia, MLKL forms cation channels, Cell Res, vol.26, pp.517-545, 2016.

S. Yoon, Necroptosis is preceded by nuclear translocation of the signaling proteins that induce it, Cell Death Differ, vol.23, pp.253-60, 2016.

Z. Wang, The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways, Cell, vol.148, pp.228-271, 2012.

W. Lu, Mitochondrial protein PGAM5 regulates mitophagic protection against cell necroptosis, PLoS One, vol.11, p.147792, 2016.

K. Moriwaki, The mitochondrial phosphatase PGAM5 is dispensable for necroptosis but promotes inflammasome activation in macrophages, J Immunol, vol.196, pp.407-422, 2016.

D. M. Moujalled, Necroptosis induced by RIPK3 requires MLKL but not Drp1, Cell Death Dis, vol.5, p.1086, 2014.

S. W. Tait, Widespread mitochondrial depletion via mitophagy does not compromise necroptosis, Cell Rep, vol.5, pp.878-85, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01384556

S. Alvarez-diaz, The pseudokinase MLKL and the kinase RIPK3 have distinct roles in autoimmune disease caused by loss of death-receptor-induced apoptosis, Immunity, vol.45, pp.513-539, 2016.

Y. Dondelinger, An evolutionary perspective on the necroptotic pathway, Trends Cell Biol, vol.26, pp.721-753, 2016.

C. Gunther, The pseudokinase MLKL mediates programmed hepatocellular necrosis independently of RIPK3 during hepatitis, J Clin Invest, vol.126, pp.4346-60, 2016.

T. Zhang, CaMKII is a RIP3 substrate mediating ischemiaand oxidative stress-induced myocardial necroptosis, Nat Med, vol.22, pp.175-82, 2016.

S. Grootjans, Initiation and execution mechanisms of necroptosis: an overview, Cell Death Differ, vol.24, pp.1184-95, 2017.

X. N. Wu, Distinct roles of RIP1-RIP3 hetero-and RIP3-RIP3 homo-interaction in mediating necroptosis, Cell Death Differ, vol.21, pp.1709-1729, 2014.

J. Seo, CHIP controls necroptosis through ubiquitylationand lysosome-dependent degradation of RIPK3, Nat Cell Biol, vol.18, pp.291-302, 2016.

M. Gyrd-hansen, All roads lead to ubiquitin, Cell Death Differ, vol.24, pp.1135-1171, 2017.

M. Onizawa, The ubiquitin-modifying enzyme A20 restricts ubiquitination of the kinase RIPK3 and protects cells from necroptosis, Nat Immunol, vol.16, pp.618-645, 2015.

W. Chen, Ppm1b negatively regulates necroptosis through dephosphorylating Rip3, Nat Cell Biol, vol.17, pp.434-478, 2015.

Y. Xie, Inhibition of Aurora kinase A induces necroptosis in pancreatic carcinoma, Gastroenterology, vol.153, pp.1429-1443, 2017.

D. Li, A cytosolic heat shock protein 90 and cochaperone CDC37 complex is required for RIP3 activation during necroptosis, Proc Natl Acad Sci U S A, vol.112, pp.5017-5039, 2015.

W. J. Kaiser, RIP3 mediates the embryonic lethality of caspase-8-deficient mice, Nature, vol.471, pp.368-72, 2011.

A. Oberst, Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis, Nature, vol.471, pp.363-67, 2011.

Y. Dondelinger, Poly-ubiquitination in TNFR1-mediated necroptosis, Cell Mol Life Sci, vol.73, pp.2165-76, 2016.

Y. Dondelinger, RIPK3 contributes to TNFR1-mediated RIPK1 kinase-dependent apoptosis in conditions of cIAP1/2 depletion or TAK1 kinase inhibition, Cell Death Differ, vol.20, pp.1381-92, 2013.

C. P. Dillon, RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3, Cell, vol.157, pp.1189-202, 2014.

R. Weinlich, Protective roles for caspase-8 and cFLIP in adult homeostasis, Cell Rep, vol.5, pp.340-348, 2013.

Q. Zhao, RIPK3 mediates necroptosis during embryonic development and postnatal inflammation in Fadd-deficient mice, Cell Rep, vol.19, pp.798-808, 2017.

Y. Liu, RIP1 kinase activity-dependent roles in embryonic development of Fadd-deficient mice, Cell Death Differ, vol.24, pp.1459-69, 2017.

C. P. Dillon, Survival function of the FADD-CASPASE-8-cFLIP(L) complex, Cell Rep, vol.1, pp.401-408, 2012.

M. C. Bonnet, The adaptor protein FADD protects epidermal keratinocytes from necroptosis in vivo and prevents skin inflammation, Immunity, vol.35, pp.572-82, 2011.

P. S. Welz, FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation, Nature, vol.477, pp.330-334, 2011.

J. V. Lu, Complementary roles of Fas-associated death domain (FADD) and receptor interacting protein kinase-3 (RIPK3) in T-cell homeostasis and antiviral immunity, Proc Natl Acad Sci, vol.108, pp.15312-15319, 2011.

S. Mccomb, cIAP1 and cIAP2 limit macrophage necroptosis by inhibiting Rip1 and Rip3 activation, Cell Death Differ, vol.19, pp.1791-801, 2012.

M. Moulin, IAPs limit activation of RIP kinases by TNF receptor 1 during development, EMBO J, vol.31, pp.1679-91, 2012.

N. Vanlangenakker, cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production, Cell Death Differ, vol.18, pp.656-65, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00590748

M. Yabal, XIAP restricts TNF-and RIP3-dependent cell death and inflammasome activation, Cell Rep, vol.7, pp.1796-808, 2014.

S. Kupka, SPATA2-mediated binding of CYLD to HOIP enables CYLD recruitment to signaling complexes, Cell Rep, vol.16, pp.2271-80, 2016.

D. M. Moquin, CYLD deubiquitinates RIP1 in the TNFalpha-induced necrosome to facilitate kinase activation and programmed necrosis, PLoS One, vol.8, p.76841, 2013.

M. A. O'donnell, Caspase 8 inhibits programmed necrosis by processing CYLD, Nat Cell Biol, vol.13, pp.1437-1479, 2011.

S. L. Petersen, TRAF2 is a biologically important necroptosis suppressor, Cell Death Differ, vol.22, pp.1846-57, 2015.

S. Morioka, TAK1 kinase switches cell fate from apoptosis to necrosis following TNF stimulation, J Cell Biol, vol.204, pp.607-630, 2014.

W. J. Kaiser, RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition, Proc Natl Acad Sci, vol.111, pp.7753-58, 2014.

J. A. Rickard, RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis, Cell, vol.157, pp.1175-88, 2014.

H. Zhang, Functional complementation between FADD and RIP1 in embryos and lymphocytes, Nature, vol.471, pp.373-76, 2011.

M. Dannappel, RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis, Nature, vol.513, pp.90-94, 2014.

N. Takahashi, RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis, Nature, vol.513, pp.95-99, 2014.

S. Orozco, RIPK1 both positively and negatively regulates RIPK3 oligomerization and necroptosis, Cell Death Differ, vol.21, pp.1511-1532, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01384184

H. Hsu, TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex, Immunity, vol.4, pp.387-96, 1996.

A. T. Ting, RIP mediates tumor necrosis factor receptor 1 activation of NF-kappaB but not Fas/APO-1-initiated apoptosis

, EMBO J, vol.15, pp.6189-96, 1996.

M. A. Kelliher, The death domain kinase RIP mediates the TNF-induced NF-kappaB signal, Immunity, vol.8, pp.297-303, 1998.

S. B. Berger, Cutting Edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice, J Immunol, vol.192, pp.5476-80, 2014.

L. Galluzzi, Molecular definitions of autophagy and related processes, EMBO J, vol.36, pp.1811-1847, 2017.

Y. Ito, RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS, Science, vol.353, pp.603-611, 2016.

K. Vlantis, NEMO prevents RIP kinase 1-mediated epithelial cell death and chronic intestinal inflammation by NF-kappaB-dependent and -independent functions, Immunity, vol.44, pp.553-67, 2016.

P. Mandal, RIP3 induces apoptosis independent of pronecrotic kinase activity, Mol Cell, vol.56, pp.481-95, 2014.

L. Duprez, Intermediate domain of receptor-interacting protein kinase 1 (RIPK1) determines switch between necroptosis and RIPK1 kinase-dependent apoptosis, J Biol Chem, vol.287, pp.14863-72, 2012.

K. E. Lawlor, RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL, Nat Commun, vol.6, p.6282, 2015.

W. D. Cook, RIPK1-and RIPK3-induced cell death mode is determined by target availability, Cell Death Differ, vol.21, pp.1600-1612, 2014.

K. Newton, RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury, Cell Death Differ, vol.23, pp.1565-76, 2016.

V. Kondylis, NEMO prevents steatohepatitis and hepatocellular carcinoma by inhibiting RIPK1 kinase activity-mediated hepatocyte apoptosis, Cancer Cell, vol.28, pp.582-98, 2015.

J. Zou, Poly IC triggers a cathepsin D-and IPS-1-dependent pathway to enhance cytokine production and mediate dendritic cell necroptosis, Immunity, vol.38, pp.717-745, 2013.

M. Fricker, Caspase inhibitors protect neurons by enabling selective necroptosis of inflamed microglia, J Biol Chem, vol.288, pp.9145-52, 2013.

L. Zitvogel, Type I interferons in anticancer immunity, Nat Rev Immunol, vol.15, pp.405-419, 2015.

N. Robinson, Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium, Nat Immunol, vol.13, pp.954-62, 2012.

R. J. Thapa, Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases, Proc Natl Acad Sci U S A, vol.110, pp.3109-3127, 2013.

S. Mccomb, Type-I interferon signaling through ISGF3 complex is required for sustained Rip3 activation and necroptosis in macrophages, Proc Natl Acad Sci, vol.111, pp.3206-3219, 2014.

S. A. Conos, Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner, Proc Natl Acad Sci U S A, vol.114, pp.961-970, 2017.

T. Kuriakose, ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways, Sci Immunol, vol.1, p.2045, 2016.

J. E. Vince, Inhibitor of apoptosis proteins limit RIP3 kinasedependent interleukin-1 activation, Immunity, vol.36, pp.215-242, 2012.

T. B. Kang, Caspase-8 blocks kinase RIPK3-mediated activation of the NLRP3 inflammasome, Immunity, vol.38, pp.27-40, 2013.

Z. Zhong, NF-kappaB restricts inflammasome activation via elimination of damaged mitochondria, Cell, vol.164, pp.896-910, 2016.

F. R. Greten, NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta, Cell, vol.130, pp.918-949, 2007.

J. E. Vince, The intersection of cell death and inflammasome activation, Cell Mol Life Sci, vol.73, pp.2349-67, 2016.

K. Moriwaki, Necroptosis-independent signaling by the RIP kinases in inflammation, Cell Mol Life Sci, vol.73, pp.2325-2359, 2016.

F. K. Chan, Programmed necrosis in the cross talk of cell death and inflammation, Annu Rev Immunol, vol.33, pp.79-106, 2015.

S. J. Dixon, Ferroptosis: bug or feature?, Immunol Rev, vol.277, pp.150-157, 2017.

W. S. Yang, Ferroptosis: death by lipid peroxidation, Trends Cell Biol, vol.26, pp.165-76, 2016.

Y. Xie, Ferroptosis: process and function, Cell Death Differ, vol.23, pp.369-79, 2016.

B. R. Stockwell, Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease, Cell, vol.171, pp.273-85, 2017.

J. Angeli, Ferroptosis inhibition: mechanisms and opportunities, Trends Pharmacol Sci, vol.38, pp.489-98, 2017.

S. J. Dixon, The role of iron and reactive oxygen species in cell death, Nat Chem Biol, vol.10, pp.9-17, 2014.

S. J. Dixon, Ferroptosis: an iron-dependent form of nonapoptotic cell death, Cell, vol.149, pp.1060-72, 2012.

A. Linkermann, Synchronized renal tubular cell death involves ferroptosis, Proc Natl Acad Sci U S A, vol.111, pp.16836-16877, 2014.

S. E. Kim, Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth, Nat Nanotechnol, vol.11, pp.977-85, 2016.

S. Gascon, Identification and successful negotiation of a metabolic checkpoint in direct neuronal reprogramming, Cell Stem Cell, vol.18, pp.396-409, 2016.

W. S. Yang, Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells, Chem Biol, vol.15, pp.234-279, 2008.

S. Dolma, Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells, Cancer Cell, vol.3, pp.285-96, 2003.

K. Shimada, Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis, Nat Chem Biol, vol.12, pp.497-503, 2016.

S. Hofmans, Novel ferroptosis inhibitors with improved potency and ADME properties, J Med Chem, vol.59, pp.2041-53, 2016.

F. Angeli and J. P. , Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice, Nat Cell Biol, vol.16, pp.1180-91, 2014.

W. S. Yang, Regulation of ferroptotic cancer cell death by GPX4, Cell, vol.156, pp.317-348, 2014.

R. Brigelius-flohe, Glutathione peroxidases, Biochim Biophys Acta, vol.1830, pp.3289-303, 2013.

A. Seiler, Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent-and AIFmediated cell death, Cell Metab, vol.8, pp.237-285, 2008.

S. J. Dixon, Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis, Elife, vol.3, p.2523, 2014.

. Latunde-dada and . Go, Ferroptosis: role of lipid peroxidation, iron and ferritinophagy, Biochim Biophys Acta, vol.1861, pp.1893-900, 2017.

L. A. Timmerman, Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target, Cancer Cell, vol.24, pp.450-65, 2013.

A. Muir, Environmental cystine drives glutamine anaplerosis and sensitizes cancer cells to glutaminase inhibition, Elife, vol.6, p.27713, 2017.

C. Louandre, The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells, Cancer Lett, vol.356, pp.971-77, 2015.

E. Lachaier, Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors, Anticancer Res, vol.34, pp.6417-6439, 2014.

C. Louandre, Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib, Int J Cancer, vol.133, pp.1732-1774, 2013.

J. H. Woo, Elucidating compound mechanism of action by network perturbation analysis, Cell, vol.162, pp.441-51, 2015.

S. Tan, Oxytosis: a novel form of programmed cell death, Curr Top Med Chem, vol.1, pp.497-506, 2001.

D. Piani, Involvement of the cystine transport system xc-in the macrophage-induced glutamate-dependent cytotoxicity to neurons, J Immunol, vol.152, pp.3578-85, 1994.

H. A. Park, Inhibition of Bcl-xL prevents pro-death actions of DeltaN-Bcl-xL at the mitochondrial inner membrane during glutamate excitotoxicity, Cell Death Differ, vol.24, pp.1963-74, 2017.

V. E. Kagan, Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis, Nat Chem Biol, vol.13, pp.81-90, 2017.

S. Doll, ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition, Nat Chem Biol, vol.13, pp.91-98, 2017.

S. J. Dixon, Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death, ACS Chem Biol, vol.10, pp.1604-1613, 2015.

H. Yuan, Identification of ACSL4 as a biomarker and contributor of ferroptosis, Biochem Biophys Res Commun, vol.478, pp.1338-1381, 2016.

W. S. Yang, Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis, Proc Natl Acad Sci U S A, vol.113, pp.4966-75, 2016.

M. Matsushita, T cell lipid peroxidation induces ferroptosis and prevents immunity to infection, J Exp Med, vol.212, pp.555-68, 2015.

N. Yagoda, RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels, Nature, vol.447, pp.864-68, 2007.

O. Zilka, On the mechanism of cytoprotection by Ferrostatin-1 and Liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death, ACS Cent Sci, vol.3, pp.232-275, 2017.

R. D. Abeysinghe, The environment of the lipoxygenase iron binding site explored with novel hydroxypyridinone iron chelators, J Biol Chem, vol.271, pp.7965-72, 1996.

M. Gao, Glutaminolysis and transferrin regulate ferroptosis, Mol Cell, vol.59, pp.298-308, 2015.

S. Torii, An essential role for functional lysosomes in ferroptosis of cancer cells, Biochem J, vol.473, pp.769-77, 2016.

W. Hou, Autophagy promotes ferroptosis by degradation of ferritin, Autophagy, vol.12, pp.1425-1453, 2016.

M. Gao, Ferroptosis is an autophagic cell death process, Cell Res, vol.26, pp.1021-1053, 2016.

H. Wang, Characterization of ferroptosis in murine models of hemochromatosis, Hepatology, vol.66, pp.449-65, 2017.

T. Kurz, Intralysosomal iron chelation protects against oxidative stress-induced cellular damage, FEBS J, vol.273, pp.3106-3123, 2006.

R. F. Dielschneider, Lysosomes as oxidative targets for cancer therapy, Oxid Med Cell Longev, p.3749157, 2017.

M. Hayano, Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation, Cell Death Differ, vol.23, pp.270-78, 2016.

X. Sun, HSPB1 as a novel regulator of ferroptotic cancer cell death, Oncogene, vol.34, pp.5617-5642, 2015.

S. Zhu, HSPA5 regulates ferroptotic cell death in cancer cells, Cancer Res, vol.77, pp.2064-77, 2017.

I. Poursaitidis, Oncogene-selective sensitivity to synchronous cell death following modulation of the amino acid nutrient cystine, Cell Rep, vol.18, pp.2547-56, 2017.

X. Sun, Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells, Hepatology, vol.63, pp.173-84, 2016.

X. Sun, Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis, Hepatology, vol.64, pp.488-500, 2016.

Y. Xie, The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity, Cell Rep, vol.20, pp.1692-704, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01581142

X. Song, FANCD2 protects against bone marrow injury from ferroptosis, Biochem Biophys Res Commun, vol.480, pp.443-452, 2016.

H. Yuan, CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation, Biochem Biophys Res Commun, vol.478, pp.838-882, 2016.

H. Imai, Early embryonic lethality caused by targeted disruption of the mouse PHGPx gene, Biochem Biophys Res Commun, vol.305, pp.278-86, 2003.

L. J. Yant, The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults, Free Radic Biol Med, vol.34, pp.496-502, 2003.

B. A. Carlson, Glutathione peroxidase 4 and vitamin E cooperatively prevent hepatocellular degeneration, Redox Biol, vol.9, pp.22-31, 2016.

W. S. Hambright, Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration, Redox Biol, vol.12, pp.8-17, 2017.

L. Chen, Ablation of the ferroptosis inhibitor glutathione peroxidase 4 in neurons results in rapid motor neuron degeneration and paralysis, J Biol Chem, vol.290, pp.28097-106, 2015.

D. Martin-sanchez, Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI, J Am Soc Nephrol, vol.28, pp.218-247, 2017.

D. Van and B. , Ferroptosis, a newly characterized form of cell death in Parkinson's disease that is regulated by PKC, Neurobiol Dis, vol.94, pp.169-78, 2016.

R. Skouta, Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models, J Am Chem Soc, vol.136, pp.4551-4557, 2014.

Y. Ou, Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses, Proc Natl Acad Sci U S A, vol.113, pp.6806-6818, 2016.

S. J. Wang, Acetylation is crucial for p53-mediated ferroptosis and tumor suppression, Cell Rep, vol.17, pp.366-73, 2016.

M. Jennis, An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model, Genes Dev, vol.30, pp.918-948, 2016.

L. Jiang, Ferroptosis as a p53-mediated activity during tumour suppression, Nature, vol.520, pp.57-62, 2015.

D. Chen, ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner, Oncogene, vol.36, pp.5593-5601, 2017.

V. S. Viswanathan, Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway, Nature, vol.547, pp.453-460, 2017.

A. M. Distefano, Heat stress induces ferroptosis-like cell death in plants, J Cell Biol, vol.216, pp.463-76, 2017.

I. Jorgensen, Pyroptotic cell death defends against intracellular pathogens, Immunol Rev, vol.265, pp.130-172, 2015.

B. T. Cookson, Pro-inflammatory programmed cell death, Trends Microbiol, vol.9, pp.113-117, 2001.

S. B. Willingham, Microbial pathogen-induced necrotic cell death mediated by the inflammasome components CIAS1/cryopyrin/NLRP3 and ASC, Cell Host Microbe, vol.2, pp.147-59, 2007.

O. Kepp, Pyroptosis -a cell death modality of its kind?, Eur J Immunol, vol.40, pp.627-657, 2010.

T. Bergsbaken, Pyroptosis: host cell death and inflammation, Nat Rev Microbiol, vol.7, pp.99-109, 2009.

A. Zychlinsky, Shigella flexneri induces apoptosis in infected macrophages, Nature, vol.358, pp.167-176, 1992.

J. Shi, Pyroptosis: gasdermin-mediated programmed necrotic cell death, Trends Biochem Sci, vol.42, pp.245-54, 2017.

J. Shi, Inflammatory caspases are innate immune receptors for intracellular LPS, Nature, vol.514, pp.187-92, 2014.

M. Aziz, Revisiting caspases in sepsis, Cell Death Dis, vol.5, p.1526, 2014.

V. Berghe and T. , Simultaneous targeting of IL-1 and IL-18 is required for protection against inflammatory and septic shock, Am J Respir Crit Care Med, vol.189, pp.282-91, 2014.

Y. Aachoui, Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection, Curr Opin Microbiol, vol.16, pp.319-345, 2013.

Y. Wang, Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin, Nature, vol.547, pp.99-103, 2017.

D. Brough, Caspase-1-dependent processing of prointerleukin-1beta is cytosolic and precedes cell death, J Cell Sci, vol.120, pp.772-81, 2007.

L. Franchi, The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis, Nat Immunol, vol.10, pp.241-248, 2009.

N. Kayagaki, Non-canonical inflammasome activation targets caspase-11, Nature, vol.479, pp.117-138, 2011.

J. Yang, Non-canonical activation of inflammatory caspases by cytosolic LPS in innate immunity, Curr Opin Immunol, vol.32, pp.78-83, 2015.

T. M. Ng, Revisiting caspase-11 function in host defense, Cell Host Microbe, vol.14, pp.9-14, 2013.

E. Kip, Impact of caspase-1/11, -3, -7, or IL-1beta/IL-18 deficiency on rabies virus-induced macrophage cell death and onset of disease, Cell Death Discov, vol.3, p.17012, 2017.

Y. Aachoui, Canonical inflammasomes drive IFN-gamma to prime caspase-11 in defense against a cytosol-invasive bacterium, Cell Host Microbe, vol.18, pp.320-352, 2015.

N. Kayagaki, Caspase-11 cleaves gasdermin D for noncanonical inflammasome signalling, Nature, vol.526, pp.666-71, 2015.

C. N. Casson, Human caspase-4 mediates noncanonical inflammasome activation against gram-negative bacterial pathogens, Proc Natl Acad Sci U S A, vol.112, pp.6688-93, 2015.

N. Kayagaki, Noncanonical inflammasome activation by intracellular LPS independent of TLR4, Science, vol.341, pp.1246-1295, 2013.

J. A. Hagar, Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock, Science, vol.341, pp.1250-53, 2013.

J. Ding, SnapShot: the noncanonical inflammasome, Cell, vol.168, pp.544-588, 2017.

J. Shi, Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death, Nature, vol.526, pp.660-665, 2015.

S. Qiu, Hints' in the killer protein gasdermin D: unveiling the secrets of gasdermins driving cell death, Cell Death Differ, vol.24, pp.588-96, 2017.

I. Zanoni, An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells, Science, vol.352, pp.1232-1238, 2016.

J. Ding, Pore-forming activity and structural autoinhibition of the gasdermin family, Nature, vol.535, pp.111-117, 2016.

X. Liu, Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores, Nature, vol.535, pp.153-161, 2016.

R. A. Aglietti, GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes, Proc Natl Acad Sci U S A, vol.113, pp.7858-63, 2016.

X. Chen, Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channelmediated necroptosis, Cell Res, vol.26, pp.1007-1027, 2016.

L. Sborgi, GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death, EMBO J, vol.35, pp.1766-78, 2016.

P. Lan, TNF superfamily receptor OX40 triggers invariant NKT cell pyroptosis and liver injury, J Clin Invest, vol.127, pp.2222-2256, 2017.

K. Eichholz, Immune-complexed adenovirus induce AIM2-mediated pyroptosis in human dendritic cells, PLoS Pathog, vol.12, p.1005871, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02187327

W. T. He, Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion, Cell Res, vol.25, pp.1285-98, 2015.

E. A. Miao, Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria, Nat Immunol, vol.11, pp.1136-1178, 2010.

I. Jorgensen, Pyroptosis triggers pore-induced intracellular traps (PITs) that capture bacteria and lead to their clearance by efferocytosis, J Exp Med, vol.213, pp.2113-2141, 2016.

V. I. Maltez, Inflammasomes coordinate pyroptosis and natural killer cell cytotoxicity to clear infection by a ubiquitous environmental bacterium, Immunity, vol.43, pp.987-97, 2015.

D. Yang, Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock, Immunity, vol.43, pp.923-955, 2015.

V. Berghe and T. , Passenger mutations confound interpretation of all genetically modified congenic mice, Immunity, vol.43, pp.200-209, 2015.

J. Yu, Inflammasome activation leads to Caspase-1-dependent mitochondrial damage and block of mitophagy, Proc Natl Acad Sci, vol.111, pp.15514-15523, 2014.

P. Broz, Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1, Nature, vol.490, pp.288-91, 2012.

V. A. Rathinam, TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria, Cell, vol.150, pp.606-625, 2012.

S. M. Man, The transcription factor IRF1 and guanylatebinding proteins target activation of the AIM2 inflammasome by Francisella infection, Nat Immunol, vol.16, pp.467-75, 2015.

E. Meunier, Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases, Nature, vol.509, pp.366-70, 2014.

D. M. Pilla, Guanylate binding proteins promote caspase-11-dependent pyroptosis in response to cytoplasmic LPS, Proc Natl Acad Sci, vol.111, pp.6046-51, 2014.

S. M. Man, IRGB10 liberates bacterial ligands for sensing by the AIM2 and caspase-11-NLRP3 inflammasomes, Cell, vol.167, pp.382-96, 2016.

D. Wallach, Programmed necrosis in inflammation: Toward identification of the effector molecules, Science, vol.352, p.2154, 2016.

B. A. Napier, Complement pathway amplifies caspase-11-dependent cell death and endotoxin-induced sepsis severity, J Exp Med, vol.213, pp.2365-82, 2016.

C. L. Case, Caspase-11 stimulates rapid flagellin-independent pyroptosis in response to Legionella pneumophila, Proc Natl Acad Sci U S A, vol.110, pp.1851-56, 2013.

S. M. Man, Differential roles of caspase-1 and caspase-11 in infection and inflammation, Sci Rep, vol.7, p.45126, 2017.

O. Kepp, Mitochondrial control of the NLRP3 inflammasome, Nat Immunol, vol.12, pp.199-200, 2011.

R. C. Coll, Questions and controversies in innate immune research: what is the physiological role of NLRP3?, Cell Death Discov, vol.2, p.16019, 2016.

F. Martin-sanchez, Lytic cell death induced by melittin bypasses pyroptosis but induces NLRP3 inflammasome activation and IL-1beta release, Cell Death Dis, vol.8, p.2984, 2017.

A. A. Fatokun, Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities, Br J Pharmacol, vol.171, pp.2000-2016, 2014.

L. Virag, ADP-ribose) signaling in cell death, Mol Aspects Med, vol.34, pp.1153-67, 2013.

K. K. David, Front Biosci (Landmark Ed), vol.14, pp.1116-1144, 2009.

S. A. Lipton, A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds, Nature, vol.364, pp.626-658, 1993.

J. Zhang, Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity, Science, vol.263, pp.687-696, 1994.

V. L. Dawson, Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures, Proc Natl Acad Sci U S A, vol.88, pp.6368-71, 1991.

S. A. Andrabi, Iduna protects the brain from glutamate excitotoxicity and stroke by interfering with poly(ADP-ribose) polymer-induced cell death, Nat Med, vol.17, pp.692-701, 2011.

S. A. Andrabi, ADP-ribose) (PAR) polymer is a death signal, Proc Natl Acad Sci, vol.103, pp.18308-18321, 2006.

S. W. Yu, Apoptosis-inducing factor mediates poly(ADPribose) (PAR) polymer-induced cell death, Proc Natl Acad Sci, vol.103, pp.18314-18323, 2006.

S. W. Yu, Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor, Science, vol.297, pp.259-63, 2002.

Y. Wang, ADP-ribose) (PAR) binding to apoptosisinducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos), Sci Signal, vol.4, issue.20, 2011.

H. Wang, Apoptosis-inducing factor substitutes for caspase executioners in NMDA-triggered excitotoxic neuronal death, J Neurosci, vol.24, pp.10963-73, 2004.

M. Mashimo, ADP-ribosyl-acceptor hydrolase 3 regulates poly (ADP-ribose) degradation and cell death during oxidative stress, Proc Natl Acad Sci U S A, vol.110, pp.18964-18973, 2013.

N. J. Curtin, Therapeutic applications of PARP inhibitors: anticancer therapy and beyond, Mol Aspects Med, vol.34, pp.1217-56, 2013.

Z. Xu, Endonuclease G does not play an obligatory role in poly(ADP-ribose) polymerase-dependent cell death after transient focal cerebral ischemia, Am J Physiol Regul Integr Comp Physiol, vol.299, pp.215-236, 2010.

S. Buttner, Endonuclease G regulates budding yeast life and death, Mol Cell, vol.25, pp.233-279, 2007.

S. Buttner, Endonuclease G mediates alpha-synuclein cytotoxicity during Parkinson's disease, EMBO J, vol.32, pp.3041-54, 2013.

X. Wang, Mechanisms of AIF-mediated apoptotic DNA degradation in Caenorhabditis elegans, Science, vol.298, pp.1587-92, 2002.

J. Parrish, Mitochondrial endonuclease G is important for apoptosis in C. elegans, Nature, vol.412, pp.90-94, 2001.

L. Y. Li, Endonuclease G is an apoptotic DNase when released from mitochondria, Nature, vol.412, pp.95-104, 2001.

K. K. David, EndoG is dispensable in embryogenesis and apoptosis, Cell Death Differ, vol.13, pp.1147-55, 2006.

R. A. Irvine, Generation and characterization of endonuclease G null mice, Mol Cell Biol, vol.25, pp.294-302, 2005.

J. L. Lin, Oxidative stress impairs cell death by repressing the nuclease activity of mitochondrial endonuclease G, Cell Rep, vol.16, pp.279-87, 2016.

Y. Wang, A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1, Science, vol.354, p.6872, 2016.

S. A. Andrabi, ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis, Proc Natl Acad Sci, vol.111, pp.10209-10223, 2014.

E. Fouquerel, ARTD1/PARP1 negatively regulates glycolysis by inhibiting hexokinase 1 independent of NAD+ depletion, Cell Rep, vol.8, pp.1819-1850, 2014.

K. H. Jang, AIF-independent parthanatos in the pathogenesis of dry age-related macular degeneration, Cell Death Dis, vol.8, p.2526, 2017.

A. B. Pardee, Cancer therapy with beta-lapachone, Curr Cancer Drug Targets, vol.2, pp.227-269, 2002.

E. J. Park, beta-Lapachone induces programmed necrosis through the RIP1-PARP-AIF-dependent pathway in human hepatocellular carcinoma SK-Hep1 cells, Cell Death Dis, vol.5, p.1230, 2014.

S. Jouan-lanhouet, TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation, Cell Death Differ, vol.19, pp.2003-2017, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00871432

J. Sosna, TNF-induced necroptosis and PARP-1-mediated necrosis represent distinct routes to programmed necrotic cell death, Cell Mol Life Sci, vol.71, pp.331-379, 2014.

Y. Lee, Parthanatos mediates AIMP2-activated age-dependent dopaminergic neuronal loss, Nat Neurosci, vol.16, pp.1392-400, 2013.

A. Sahaboglu, PARP1 gene knock-out increases resistance to retinal degeneration without affecting retinal function, PLoS One, vol.5, p.15495, 2010.

M. J. Eliasson, ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia, Nat Med, vol.3, pp.1089-95, 1997.

J. Kim, Loss of poly(ADP-ribose) polymerase 1 attenuates renal fibrosis and inflammation during unilateral ureteral obstruction, Am J Physiol Renal Physiol, vol.301, pp.450-59, 2011.

S. Krishna, Mechanisms and consequences of entosis, Cell Mol Life Sci, vol.73, pp.2379-86, 2016.

O. Florey, Entosis: cell-in-cell formation that kills through entotic cell death, Curr Mol Med, vol.15, pp.861-867, 2015.

E. Perez, Intercellular cannibalism fuels tumor growth, Cell Death Differ, vol.24, pp.759-60, 2017.

M. Overholtzer, A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion, Cell, vol.131, pp.966-79, 2007.

Q. Wan, Regulation of myosin activation during cell-cell contact formation by Par3-Lgl antagonism: entosis without matrix detachment, Mol Biol Cell, vol.23, pp.2076-91, 2012.

Q. Sun, Competition between human cells by entosis, Cell Res, vol.24, pp.1299-310, 2014.

J. C. Hamann, Entosis is induced by glucose starvation, Cell Rep, vol.20, pp.201-211, 2017.

J. Durgan, Mitosis can drive cell cannibalism through entosis, Elife, vol.6, p.27134, 2017.

M. Wang, Impaired formation of homotypic cell-in-cell structures in human tumor cells lacking alpha-catenin expression, Sci Rep, vol.5, p.12223, 2015.

V. Purvanov, G-protein-coupled receptor signaling and polarized actin dynamics drive cell-in-cell invasion, Elife, vol.3, p.2786, 2014.

Q. Sun, Induction of entosis by epithelial cadherin expression, Cell Res, vol.24, pp.1288-98, 2014.

L. S. Hinojosa, MRTF transcription and Ezrin-dependent plasma membrane blebbing are required for entotic invasion, J Cell Biol, vol.216, pp.3087-95, 2017.

P. Xia, Aurora A orchestrates entosis by regulating a dynamic MCAK-TIP150 interaction, J Mol Cell Biol, vol.6, pp.240-54, 2014.

O. Florey, Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes, Nat Cell Biol, vol.13, pp.1335-1378, 2011.

S. E. Kim, Autophagy proteins regulate cell engulfment mechanisms that participate in cancer, Semin Cancer Biol, vol.23, pp.329-365, 2013.

M. A. Sanjuan, Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis, Nature, vol.450, pp.1253-57, 2007.

M. Krajcovic, mTOR regulates phagosome and entotic vacuole fission, Mol Biol Cell, vol.24, pp.3736-3781, 2013.

S. Krishna, PIKfyve regulates vacuole maturation and nutrient recovery following engulfment, Dev Cell, vol.38, pp.536-583, 2016.

S. Wang, Internalization of NK cells into tumor cells requires ezrin and leads to programmed cell-in-cell death, Cell Res, vol.19, pp.1350-62, 2009.

S. Wen, Androgen receptor enhances entosis, a nonapoptotic cell death, through modulation of Rho/ROCK pathway in prostate cancer cells, Prostate, vol.73, pp.1306-1321, 2013.

M. Jamal-hanjani, Tracking the evolution of non-small-cell lung cancer, N Engl J Med, vol.376, pp.2109-2130, 2017.

I. Vitale, Illicit survival of cancer cells during polyploidization and depolyploidization, Cell Death Differ, vol.18, pp.1403-1416, 2011.

I. Vitale, Karyotypic aberrations in oncogenesis and cancer therapy, Trends Cancer, vol.1, pp.124-159, 2015.

M. Krajcovic, A non-genetic route to aneuploidy in human cancers, Nat Cell Biol, vol.13, pp.324-354, 2011.

M. Krajcovic, Mechanisms of ploidy increase in human cancers: a new role for cell cannibalism, Cancer Res, vol.72, pp.1596-601, 2012.

Y. Li, Entosis allows timely elimination of the luminal epithelial barrier for embryo implantation, Cell Rep, vol.11, pp.358-65, 2015.

N. Ahmed, Entosis acts as a novel way within Sertoli cells to eliminate spermatozoa in seminiferous tubule, Front Physiol, vol.8, p.361, 2017.

V. Brinkmann, Neutrophil extracellular traps: is immunity the second function of chromatin?, J Cell Biol, vol.198, pp.773-83, 2012.

Q. Remijsen, Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality, Cell Death Differ, vol.18, pp.581-589, 2011.

V. Brinkmann, Neutrophil extracellular traps kill bacteria, Science, vol.303, pp.1532-1537, 2004.

N. Branzk, Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens, Nat Immunol, vol.15, pp.1017-1042, 2014.

S. R. Clark, Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood, Nat Med, vol.13, pp.463-472, 2007.

K. Csomos, Protein cross-linking by chlorinated polyamines and transglutamylation stabilizes neutrophil extracellular traps, Cell Death Dis, vol.7, p.2332, 2016.

S. Yousefi, Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps, Cell Death Differ, vol.16, pp.1438-1482, 2009.

D. J. Mcilroy, Mitochondrial DNA neutrophil extracellular traps are formed after trauma and subsequent surgery, J Crit Care, vol.29, pp.1131-1136, 2014.

H. Wang, Neutrophil extracellular trap mitochondrial DNA and its autoantibody in systemic lupus erythematosus and a proof-of-concept trial of metformin, Arthritis Rheumatol, vol.67, pp.3190-200, 2015.

S. Caielli, Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus, J Exp Med, vol.213, pp.697-713, 2016.

C. Lood, Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupuslike disease, Nat Med, vol.22, pp.146-53, 2016.

J. Cedervall, Tumor-induced NETosis as a risk factor for metastasis and organ failure, Cancer Res, vol.76, pp.4311-4316, 2016.

M. Demers, Priming of neutrophils toward NETosis promotes tumor growth, Oncoimmunology, vol.5, p.1134073, 2016.

S. L. Wong, Diabetes primes neutrophils to undergo NETosis, which impairs wound healing, Nat Med, vol.21, pp.815-824, 2015.

F. Wartha, ETosis: a novel cell death pathway, Sci Signal, vol.1, p.25, 2008.

S. Yousefi, Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense, Nat Med, vol.14, pp.949-53, 2008.

M. Morshed, NADPH oxidase-independent formation of extracellular DNA traps by basophils, J Immunol, vol.192, pp.5314-5337, 2014.

B. G. Yipp, Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo, Nat Med, vol.18, pp.1386-93, 2012.

T. A. Fuchs, Novel cell death program leads to neutrophil extracellular traps, J Cell Biol, vol.176, pp.231-272, 2007.

H. Parker, Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus, J Leukoc Biol, vol.92, pp.841-850, 2012.

A. Hakkim, Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation, Nat Chem Biol, vol.7, pp.75-82, 2011.

Q. Remijsen, Neutrophil extracellular trap cell death requires both autophagy and superoxide generation, Cell Res, vol.21, pp.290-304, 2011.

V. Papayannopoulos, Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps, J Cell Biol, vol.191, pp.677-91, 2010.

K. D. Metzler, A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis, Cell Rep, vol.8, pp.883-96, 2014.

K. D. Metzler, Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity, Blood, vol.117, pp.953-962, 2011.

D. Stojkov, ROS and glutathionylation balance cytoskeletal dynamics in neutrophil extracellular trap formation, J Cell Biol, vol.216, pp.4073-4090, 2017.

K. Martinod, Neutrophil elastase-deficient mice form neutrophil extracellular traps in an experimental model of deep vein thrombosis, J Thromb Haemost, vol.14, pp.551-559, 2016.

P. Li, PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps, J Exp Med, vol.207, pp.1853-62, 2010.

J. Desai, Matters of life and death. How neutrophils die or survive along NET release and is "NETosis" = necroptosis?, Cell Mol Life Sci, vol.73, pp.2211-2230, 2016.

S. Hemmers, PAD4-mediated neutrophil extracellular trap formation is not required for immunity against influenza infection, PLoS One, vol.6, p.22043, 2011.

J. Desai, PMA and crystal-induced neutrophil extracellular trap formation involves RIPK1-RIPK3-MLKL signaling, Eur J Immunol, vol.46, pp.223-232, 2016.

P. Amini, NET formation can occur independently of RIPK3 and MLKL signaling, Eur J Immunol, vol.46, pp.178-84, 2016.

S. Aits, Lysosomal cell death at a glance, J Cell Sci, vol.126, pp.1905-1917, 2013.

R. Gomez-sintes, Lysosomal cell death mechanisms in aging, Ageing Res Rev, vol.32, pp.150-68, 2016.

A. Serrano-puebla, Lysosomal membrane permeabilization in cell death: new evidence and implications for health and disease, Ann N Y Acad Sci, vol.1371, pp.30-44, 2016.

K. Yacobi-sharon, Alternative germ cell death pathway in Drosophila involves HtrA2/Omi, lysosomes, and a caspase-9 counterpart, Dev Cell, vol.25, pp.29-42, 2013.

H. Yang, The regulated elimination of transit-amplifying cells preserves tissue homeostasis during protein starvation in Drosophila testis, Development, vol.142, pp.1756-66, 2015.

K. L. Lu, Germ cell connectivity enhances cell death in response to DNA damage in the Drosophila testis, Elife, vol.6, p.27960, 2017.

L. M. Kutscher, Non-apoptotic cell death in animal development, Cell Death Differ, vol.24, pp.1326-1362, 2017.

J. Huai, TNFalpha-induced lysosomal membrane permeability is downstream of MOMP and triggered by caspasemediated NDUFS1 cleavage and ROS formation, J Cell Sci, vol.126, pp.4015-4040, 2013.

C. Oberle, Lysosomal membrane permeabilization and cathepsin release is a Bax/Bak-dependent, amplifying event of apoptosis in fibroblasts and monocytes, Cell Death Differ, vol.17, pp.1167-78, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00504935

N. Plotegher, Mitochondrial dysfunction and neurodegeneration in lysosomal storage disorders, Trends Mol Med, vol.23, pp.116-150, 2017.

P. Boya, Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion, J Exp Med, vol.197, pp.1323-1357, 2003.

P. Boya, Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine, Oncogene, vol.22, pp.3927-3963, 2003.

A. E. Feldstein, Bax inhibition protects against free fatty acid-induced lysosomal permeabilization, Am J Physiol Gastrointest Liver Physiol, vol.290, pp.1339-1385, 2006.

F. Chen, The octyl ester of ginsenoside Rh2 induces lysosomal membrane permeabilization via Bax translocation, Nutrients, vol.8, p.244, 2016.

J. Bove, BAX channel activity mediates lysosomal disruption linked to Parkinson disease, Autophagy, vol.10, pp.889-900, 2014.

J. J. Guan, DRAM1 regulates apoptosis through increasing protein levels and lysosomal localization of BAX, Cell Death Dis, vol.6, p.1624, 2015.

T. Kurz, Lysosomes and oxidative stress in aging and apoptosis, Biochim Biophys Acta, vol.1780, pp.1291-303, 2008.

T. Kurz, Lysosomes in iron metabolism, ageing and apoptosis, Histochem Cell Biol, vol.129, pp.389-406, 2008.

A. Sumoza-toledo, TRPM2: a multifunctional ion channel for calcium signalling, J Physiol, vol.589, pp.1515-1540, 2011.

N. W. Werneburg, Tumor necrosis factor-related apoptosisinducing ligand (TRAIL) protein-induced lysosomal translocation of proapoptotic effectors is mediated by phosphofurin acidic cluster sorting protein-2 (PACS-2), J Biol Chem, vol.287, pp.24427-24464, 2012.

M. Laforge, DRAM triggers lysosomal membrane permeabilization and cell death in CD4(+) T cells infected with HIV, PLoS Pathog, vol.9, p.1003328, 2013.

I. Maejima, Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury, EMBO J, vol.32, pp.2336-2383, 2013.

V. Hornung, Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization, Nat Immunol, vol.9, pp.847-56, 2008.

D. Crighton, DRAM, a p53-induced modulator of autophagy, is critical for apoptosis, Cell, vol.126, pp.121-155, 2006.

P. A. Kreuzaler, Stat3 controls lysosomal-mediated cell death in vivo, Nat Cell Biol, vol.13, pp.303-312, 2011.

T. J. Sargeant, Stat3 controls cell death during mammary gland involution by regulating uptake of milk fat globules and lysosomal membrane permeabilization, Nat Cell Biol, vol.16, pp.1057-68, 2014.

G. Droga-mazovec, Cysteine cathepsins trigger caspasedependent cell death through cleavage of bid and antiapoptotic Bcl-2 homologues, J Biol Chem, vol.283, pp.19140-50, 2008.

N. Bidere, Cathepsin D triggers Bax activation, resulting in selective apoptosis-inducing factor (AIF) relocation in T lymphocytes entering the early commitment phase to apoptosis, J Biol Chem, vol.278, pp.31401-31412, 2003.

M. Taniguchi, Lysosomal ceramide generated by acid sphingomyelinase triggers cytosolic cathepsin B-mediated degradation of X-linked inhibitor of apoptosis protein in natural killer/T lymphoma cell apoptosis, Cell Death Dis, vol.6, p.1717, 2015.

D. R. Green, Mitochondria and the autophagy-inflammationcell death axis in organismal aging, Science, vol.333, pp.1109-1121, 2011.

R. J. Youle, Mechanisms of mitophagy, Nat Rev Mol Cell Biol, vol.12, pp.9-14, 2011.

F. Loison, Proteinase 3-dependent caspase-3 cleavage modulates neutrophil death and inflammation, J Clin Invest, vol.124, pp.4445-58, 2014.

J. Brojatsch, Distinct cathepsins control necrotic cell death mediated by pyroptosis inducers and lysosome-destabilizing agents, Cell Cycle, vol.14, pp.964-72, 2015.

K. F. Hsu, Cathepsin L mediates resveratrol-induced autophagy and apoptotic cell death in cervical cancer cells, Autophagy, vol.5, pp.451-60, 2009.

N. F. Trincheri, Resveratrol induces cell death in colorectal cancer cells by a novel pathway involving lysosomal cathepsin D, Carcinogenesis, vol.28, pp.922-953, 2007.

V. Turk, Cysteine cathepsins: from structure, function and regulation to new frontiers, Biochim Biophys Acta, vol.1824, pp.68-88, 2012.

V. Turk, Cystatins: biochemical and structural properties, and medical relevance, Front Biosci, vol.13, pp.5406-5426, 2008.

B. Gooptu, Conformational pathology of the serpins: themes, variations, and therapeutic strategies, Annu Rev Biochem, vol.78, pp.147-76, 2009.

H. Appelqvist, Sensitivity to lysosome-dependent cell death is directly regulated by lysosomal cholesterol content, PLoS One, vol.7, p.50262, 2012.

T. Kirkegaard, Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology, Nature, vol.463, pp.549-53, 2010.

J. Nylandsted, Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization, J Exp Med, vol.200, pp.425-460, 2004.

T. Kirkegaard, Heat shock protein-based therapy as a potential candidate for treating the sphingolipidoses, Sci Transl Med, vol.8, pp.355-118, 2016.

L. Groth-pedersen, Combating apoptosis and multidrug resistant cancers by targeting lysosomes, Cancer Lett, vol.332, pp.265-74, 2013.

N. H. Petersen, Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase, Cancer Cell, vol.24, pp.379-93, 2013.

M. T. Gyparaki, Lysosome: the cell's 'suicidal bag' as a promising cancer target, Trends Mol Med, vol.20, pp.239-280, 2014.

S. Piao, Targeting the lysosome in cancer, Ann N Y Acad Sci, vol.1371, pp.45-54, 2016.

H. Zhang, Eaten alive: novel insights into autophagy from multicellular model systems, Trends Cell Biol, vol.25, pp.376-87, 2015.

K. Sharma, Cytotoxic autophagy in cancer therapy, Int J Mol Sci, vol.15, pp.10034-51, 2014.

G. Das, Regulation and function of autophagy during cell survival and cell death, Cold Spring Harb Perspect Biol, vol.4, p.8813, 2012.

J. Fullgrabe, Transcriptional regulation of mammalian autophagy at a glance, J Cell Sci, vol.129, pp.3059-66, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01438169

S. H. Baek, Epigenetic control of autophagy: nuclear events gain more attention, Mol Cell, vol.65, pp.781-786, 2017.

F. Pietrocola, Regulation of autophagy by stress-responsive transcription factors, Semin Cancer Biol, vol.23, pp.310-332, 2013.

J. Fullgrabe, The return of the nucleus: transcriptional and epigenetic control of autophagy, Nat Rev Mol Cell Biol, vol.15, pp.65-74, 2014.

D. J. Klionsky, Guidelines for the use and interpretation of assays for monitoring autophagy, Autophagy, vol.12, pp.1-222, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01343085

L. Galluzzi, Metabolic control of autophagy, Cell, vol.159, pp.1263-76, 2014.

J. Kaur, Autophagy at the crossroads of catabolism and anabolism, Nat Rev Mol Cell Biol, vol.16, pp.461-72, 2015.

L. Galluzzi, Autophagy in malignant transformation and cancer progression, EMBO J, vol.34, pp.856-80, 2015.

J. Levy, Targeting autophagy in cancer, Nat Rev Cancer, vol.17, pp.528-570, 2017.

M. Levy and J. M. , Autophagy inhibition overcomes multiple mechanisms of resistance to BRAF inhibition in brain tumors, Elife, vol.6, p.19671, 2017.

A. Pagotto, Autophagy inhibition reduces chemoresistance and tumorigenic potential of human ovarian cancer stem cells, Cell Death Dis, vol.8, p.2943, 2017.

V. Sica, Organelle-specific initiation of autophagy, Mol Cell, vol.59, pp.522-561, 2015.

P. Liu, High autophagic flux guards ESC identity through coordinating autophagy machinery gene program by FOXO1, Cell Death Differ, vol.24, pp.1672-80, 2017.

D. Gatica, Molecular mechanisms of autophagy in the cardiovascular system, Circ Res, vol.116, pp.456-67, 2015.

F. M. Menzies, Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities, Neuron, vol.93, pp.1015-1049, 2017.

F. M. Menzies, Compromised autophagy and neurodegenerative diseases, Nat Rev Neurosci, vol.16, pp.345-57, 2015.

L. Galluzzi, Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles, Nat Rev Drug Discov, vol.16, pp.487-511, 2017.

J. M. Bravo-san-pedro, Autophagy and mitophagy in cardiovascular disease, Circ Res, vol.120, pp.1812-1836, 2017.

L. Galluzzi, Autophagy in acute brain injury, Nat Rev Neurosci, vol.17, pp.467-84, 2016.

A. L. Anding, Autophagy in cell life and cell death, Curr Top Dev Biol, vol.114, pp.67-91, 2015.

D. Denton, Autophagy as a pro-death pathway, Immunol Cell Biol, vol.93, pp.35-42, 2015.

D. Denton, Cell death by autophagy: facts and apparent artefacts, Cell Death Differ, vol.19, pp.87-95, 2012.

T. Saleh, Autophagy is not uniformly cytoprotective: a personalized medicine approach for autophagy inhibition as a therapeutic strategy in non-small cell lung cancer, Biochim Biophys Acta, vol.1860, pp.2130-2136, 2016.

J. M. Gump, Autophagy variation within a cell population determines cell fate through selective degradation of Fap-1, Nat Cell Biol, vol.16, pp.47-54, 2014.

M. L. Goodall, The autophagy machinery controls cell death switching between apoptosis and necroptosis, Dev Cell, vol.37, pp.337-386, 2016.

A. Dey, Inhibition of BMI1 induces autophagy-mediated necroptosis, Autophagy, vol.12, pp.659-70, 2016.

F. Basit, GX15-070) triggers necroptosis by promoting the assembly of the necrosome on autophagosomal membranes, Cell Death Differ, vol.20, pp.1161-73, 2013.

W. He, A JNK-mediated autophagy pathway that triggers c-IAP degradation and necroptosis for anticancer chemotherapy, Oncogene, vol.33, pp.3004-3017, 2014.

D. Denton, Larval midgut destruction in Drosophila: not dependent on caspases but suppressed by the loss of autophagy, Autophagy, vol.6, pp.163-168, 2010.

D. Denton, Autophagy, not apoptosis, is essential for midgut cell death in Drosophila, Curr Biol, vol.19, pp.1741-1747, 2009.

T. Xu, Characterization of autophagic responses in Drosophila melanogaster, Methods Enzymol, vol.588, pp.445-450, 2017.

D. L. Berry, Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila, Cell, vol.131, pp.1137-1185, 2007.

K. Mills, The Drosophila melanogaster Apaf-1 homologue ARK is required for most, but not all, programmed cell death, J Cell Biol, vol.172, pp.809-824, 2006.

T. J. Daish, Drosophila caspase DRONC is required for specific developmental cell death pathways and stress-induced apoptosis, Dev Cell, vol.7, pp.909-924, 2004.

D. Denton, Relationship between growth arrest and autophagy in midgut programmed cell death in Drosophila, Cell Death Differ, vol.19, pp.1299-307, 2012.

H. Wang, Autophagy activity contributes to programmed cell death in Caenorhabditis elegans, Autophagy, vol.9, pp.1975-82, 2013.

S. Arakawa, Role of Atg5-dependent cell death in the embryonic development of Bax/Bak double-knockout mice, Cell Death Differ, vol.24, pp.1598-608, 2017.

S. Shimizu, Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes, Nat Cell Biol, vol.6, pp.1221-1229, 2004.

T. Xu, Distinct requirements of Autophagy-related genes in programmed cell death, Cell Death Differ, vol.22, pp.1792-802, 2015.

T. K. Chang, Uba1 functions in Atg7-and Atg3-independent autophagy, Nat Cell Biol, vol.15, pp.1067-78, 2013.

D. Denton, UTX coordinates steroid hormone-mediated autophagy and cell death, Nat Commun, vol.4, p.2916, 2013.

C. Nelson, miR-14 regulates autophagy during developmental cell death by targeting ip3-kinase 2, Mol Cell, vol.56, pp.376-88, 2014.

K. Tracy, Ral GTPase and the exocyst regulate autophagy in a tissue-specific manner, EMBO Rep, vol.17, pp.110-131, 2016.

C. K. Mcphee, Activation of autophagy during cell death requires the engulfment receptor Draper, Nature, vol.465, pp.1093-1099, 2010.

L. Lin, Complement-related regulates autophagy in neighboring cells, Cell, vol.170, pp.158-71, 2017.

Y. C. Hou, Effector caspase Dcp-1 and IAP protein Bruce regulate starvation-induced autophagy during Drosophila melanogaster oogenesis, J Cell Biol, vol.182, pp.1127-1166, 2008.

I. P. Nezis, Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late Drosophila melanogaster oogenesis, J Cell Biol, vol.190, pp.523-554, 2010.

I. P. Nezis, Cell death during Drosophila melanogaster early oogenesis is mediated through autophagy, Autophagy, vol.5, pp.298-302, 2009.

C. Xie, Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury, Autophagy, vol.12, pp.410-433, 2016.

P. Guha, Cocaine elicits autophagic cytotoxicity via a nitric oxide-GAPDH signaling cascade, Proc Natl Acad Sci U S A, vol.113, pp.1417-1439, 2016.

S. K. Dasari, Signalome-wide RNAi screen identifies GBA1 as a positive mediator of autophagic cell death, Cell Death Differ, vol.24, pp.1288-302, 2017.

K. Wang, APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p, Nat Commun, vol.6, p.6779, 2015.

Y. Liu, Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia, Proc Natl Acad Sci U S A, vol.110, pp.20364-71, 2013.

L. Galluzzi, Immunogenic cell death in cancer and infectious disease, Nat Rev Immunol, vol.17, pp.97-111, 2017.

O. Kepp, Consensus guidelines for the detection of immunogenic cell death, Oncoimmunology, vol.3, p.955691, 2014.

C. Vanpouille-box, DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity, Nat Commun, vol.8, p.15618, 2017.

E. Buytaert, Molecular effectors of multiple cell death pathways initiated by photodynamic therapy, Biochim Biophys Acta, vol.1776, pp.86-107, 2007.

L. Galluzzi, Activating autophagy to potentiate immunogenic chemotherapy and radiation therapy, Nat Rev Clin Oncol, vol.14, pp.247-58, 2017.

I. Adkins, Physical modalities inducing immunogenic tumor cell death for cancer immunotherapy, Oncoimmunology, vol.3, p.968434, 2014.

G. Kroemer, Immunogenic cell death in cancer therapy, Annu Rev Immunol, vol.31, pp.51-72, 2013.

A. D. Garg, Dendritic cell vaccines based on immunogenic cell death elicit danger signals and T cell-driven rejection of high-grade glioma, Sci Transl Med, vol.8, pp.328-327, 2016.

L. Bezu, Combinatorial strategies for the induction of immunogenic cell death, Front Immunol, vol.6, p.187, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01215586

L. Galluzzi, Immunological mechanisms underneath the efficacy of cancer therapy, Cancer Immunol Res, vol.4, pp.895-902, 2016.

M. T. Lotze, Damage associated molecular pattern molecules, Clin Immunol, vol.124, pp.1-4, 2007.

P. Matzinger, The danger model: a renewed sense of self, Science, vol.296, pp.301-306, 2002.

A. D. Garg, Pathogen response-like recruitment and activation of neutrophils by sterile immunogenic dying cells drives neutrophil-mediated residual cell killing, Cell Death Differ, vol.24, pp.832-875, 2017.

M. Obeid, Calreticulin exposure dictates the immunogenicity of cancer cell death, Nat Med, vol.13, pp.54-61, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00451702

S. J. Gardai, Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte, Cell, vol.123, pp.321-355, 2005.

M. Michaud, Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice, Science, vol.334, pp.1573-1580, 2011.

M. R. Elliott, Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance, Nature, vol.461, pp.282-288, 2009.

F. Ghiringhelli, Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors, Nat Med, vol.15, pp.1170-78, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00419823

L. Apetoh, Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy, Nat Med, vol.13, pp.1050-59, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00316924

P. Scaffidi, Release of chromatin protein HMGB1 by necrotic cells triggers inflammation, Nature, vol.418, pp.191-95, 2002.

A. Conte, High mobility group A1 protein modulates autophagy in cancer cells, Cell Death Differ, vol.24, pp.1948-62, 2017.

A. Sistigu, Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy, Nat Med, vol.20, pp.1301-1310, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02047408

A. Hunger, Reestablishment of p53/Arf and interferon-beta pathways mediated by a novel adenoviral vector potentiates antiviral response and immunogenic cell death, Cell Death Discov, vol.3, p.17017, 2017.

S. Chiba, Tumor-infiltrating DCs suppress nucleic acidmediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1, Nat Immunol, vol.13, pp.832-874, 2012.

E. Vacchelli, Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1, Science, vol.350, pp.972-980, 2015.

P. Gelebart, Calreticulin, a Ca2+-binding chaperone of the endoplasmic reticulum, Int J Biochem Cell Biol, vol.37, pp.260-266, 2005.

T. Panaretakis, Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death, EMBO J, vol.28, pp.578-90, 2009.

O. Kepp, eIF2alpha phosphorylation as a biomarker of immunogenic cell death, Semin Cancer Biol, vol.33, pp.86-92, 2015.

P. Kranz, PDI is an essential redox-sensitive activator of PERK during the unfolded protein response (UPR), Cell Death Dis, vol.8, p.2986, 2017.

T. Panaretakis, The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death, Cell Death Differ, vol.15, pp.1499-509, 2008.

S. Pawaria, CD91-dependent programming of T-helper cell responses following heat shock protein immunization, Nat Commun, vol.2, p.521, 2011.

A. D. Garg, A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death

, EMBO J, vol.31, pp.1062-79, 2012.

A. D. Garg, Resistance to anticancer vaccination effect is controlled by a cancer cell-autonomous phenotype that disrupts immunogenic phagocytic removal, Oncotarget, vol.6, pp.26841-60, 2015.

A. N. Barclay, The interaction between signal regulatory protein alpha (SIRPalpha) and CD47: structure, function, and therapeutic target, Annu Rev Immunol, vol.32, pp.25-50, 2014.

J. T. Sockolosky, Durable antitumor responses to CD47 blockade require adaptive immune stimulation, Proc Natl Acad Sci U S A, vol.113, pp.2646-54, 2016.

J. Fucikova, Calreticulin exposure by malignant blasts correlates with robust anticancer immunity and improved clinical outcome in AML patients, Blood, vol.128, pp.3113-3137, 2016.

H. Wang, Expression and significance of CD44, CD47 and c-met in ovarian clear cell carcinoma, Int J Mol Sci, vol.16, pp.3391-404, 2015.

S. Suzuki, CD47 expression regulated by the miR-133a tumor suppressor is a novel prognostic marker in esophageal squamous cell carcinoma, Oncol Rep, vol.28, pp.465-72, 2012.

M. P. Chao, Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47, Sci Transl Med, vol.2, pp.63-94, 2010.

R. Majeti, CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells, Cell, vol.138, pp.286-99, 2009.

K. Tada, Tethering of apoptotic cells to phagocytes through binding of CD47 to Src homology 2 domain-bearing protein tyrosine phosphatase substrate-1, J Immunol, vol.171, pp.5718-5744, 2003.

A. Nilsson, CD47 promotes both phosphatidylserineindependent and phosphatidylserine-dependent phagocytosis of apoptotic murine thymocytes by non-activated macrophages, Biochem Biophys Res Commun, vol.387, pp.58-63, 2009.

Y. Ma, Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells, Immunity, vol.38, pp.729-770, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02047416

L. Zitvogel, Inflammasomes in carcinogenesis and anticancer immune responses, Nat Immunol, vol.13, pp.343-51, 2012.

A. Trautmann, Extracellular ATP in the immune system: more than just a "danger signal, Sci Signal, vol.2, p.6, 2009.

Y. Ma, Autophagy and cellular immune responses, Immunity, vol.39, pp.211-238, 2013.

Y. Wang, Autophagy-dependent ATP release from dying cells via lysosomal exocytosis, Autophagy, vol.9, pp.1624-1649, 2013.

F. B. Chekeni, Pannexin 1 channels mediate 'find-me' signal release and membrane permeability during apoptosis, Nature, vol.467, pp.863-870, 2010.

A. D. Garg, Autophagy-dependent suppression of cancer immunogenicity and effector mechanisms of innate and adaptive immunity, Oncoimmunology, vol.2, p.26260, 2013.

A. D. Garg, ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death, Autophagy, vol.9, pp.1292-307, 2013.

L. Antonioli, Immunity, inflammation and cancer: a leading role for adenosine, Nat Rev Cancer, vol.13, pp.842-57, 2013.

F. Chalmin, Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression, Immunity, vol.36, pp.362-73, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00821485

X. Sun, CD39/ENTPD1 expression by CD4+Foxp3+ regulatory T cells promotes hepatic metastatic tumor growth in mice, Gastroenterology, vol.139, pp.1030-1070, 2010.

K. J. Mackenzie, cGAS surveillance of micronuclei links genome instability to innate immunity, Nature, vol.548, pp.461-466, 2017.

S. M. Harding, Mitotic progression following DNA damage enables pattern recognition within micronuclei, Nature, vol.548, pp.466-70, 2017.

F. Mcnab, Type I interferons in infectious disease, Nat Rev Immunol, vol.15, pp.87-103, 2015.

L. Corrales, The host STING pathway at the interface of cancer and immunity, J Clin Invest, vol.126, pp.2404-2415, 2016.

L. Deng, STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors, Immunity, vol.41, pp.843-52, 2014.

S. R. Woo, STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors, Immunity, vol.41, pp.830-872, 2014.

M. B. Fuertes, Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8{alpha}+ dendritic cells, J Exp Med, vol.208, pp.2005-2021, 2011.

G. P. Sims, HMGB1 and RAGE in inflammation and cancer, Annu Rev Immunol, vol.28, pp.367-88, 2010.

A. Tittarelli, Toll-like receptor 4 gene polymorphism influences dendritic cell in vitro function and clinical outcomes in vaccinated melanoma patients, Cancer Immunol Immunother, vol.61, pp.2067-77, 2012.

A. Gast, Association of inherited variation in Toll-like receptor genes with malignant melanoma susceptibility and survival, PLoS One, vol.6, p.24370, 2011.

C. Bergmann, Toll-like receptor 4 single-nucleotide polymorphisms Asp299Gly and Thr399Ile in head and neck squamous cell carcinomas, J Transl Med, vol.9, p.139, 2011.

I. E. Dumitriu, Release of high mobility group box 1 by dendritic cells controls T cell activation via the receptor for advanced glycation end products, J Immunol, vol.174, pp.7506-7521, 2005.

D. Tang, A Janus tale of two active high mobility group box 1 (HMGB1) redox states, Mol Med, vol.18, pp.1360-62, 2012.

E. Venereau, Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release, J Exp Med, vol.209, pp.1519-1547, 2012.

H. Yang, Redox modification of cysteine residues regulates the cytokine activity of high mobility group box-1 (HMGB1)

, Mol Med, vol.18, pp.250-259, 2012.

D. Tang, HMGB1 release and redox regulates autophagy and apoptosis in cancer cells, Oncogene, vol.29, pp.5299-310, 2010.

H. Kazama, Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of highmobility group box-1 protein, Immunity, vol.29, pp.21-32, 2008.

A. Rubartelli, Inside, outside, upside down: damageassociated molecular-pattern molecules (DAMPs) and redox, Trends Immunol, vol.28, pp.429-465, 2007.

R. Kang, HMGB1 in health and disease, Mol Aspects Med, vol.40, pp.1-116, 2014.

P. F. Connolly, Viral hijacking of host caspases: an emerging category of pathogen-host interactions, Cell Death Differ, vol.24, pp.1401-1411, 2017.

E. Giampazolias, Mitochondrial permeabilization engages NF-kappaB-dependent anti-tumour activity under caspase deficiency, Nat Cell Biol, vol.19, pp.1116-1145, 2017.

C. J. Kearney, An inflammatory perspective on necroptosis, Mol Cell, vol.65, pp.965-73, 2017.

C. Gunther, Caspase-8 regulates TNF-alpha-induced epithelial necroptosis and terminal ileitis, Nature, vol.477, pp.335-344, 2011.

N. Yatim, RIPK1 and NF-kappaB signaling in dying cells determines cross-priming of CD8(+) T cells, Science, vol.350, pp.328-362, 2015.

A. Buque, Trial Watch-Small molecules targeting the immunological tumor microenvironment for cancer therapy, Oncoimmunology, vol.5, p.1149674, 2016.

S. Zelenay, Reducing prostaglandin E2 production to raise cancer immunogenicity, Oncoimmunology, vol.5, p.1123370, 2016.

A. Rongvaux, Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA, Cell, vol.159, pp.1563-77, 2014.

M. J. White, Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production, Cell, vol.159, pp.1549-62, 2014.

J. Campisi, Aging, cellular senescence, and cancer, Annu Rev Physiol, vol.75, pp.685-705, 2013.

N. E. Sharpless, Forging a signature of in vivo senescence, Nat Rev Cancer, vol.15, pp.397-408, 2015.

J. M. Van-deursen, The role of senescent cells in ageing, Nature, vol.509, pp.439-485, 2014.

J. W. Harper, The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases, Cell, vol.75, pp.805-821, 1993.

M. Serrano, A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4, Nature, vol.366, pp.704-711, 1993.

A. Kamb, A cell cycle regulator potentially involved in genesis of many tumor types, Science, vol.264, pp.436-476, 1994.

T. Kamijo, Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF, Cell, vol.91, pp.649-59, 1997.

Y. Zhang, ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways, Cell, vol.92, pp.725-759, 1998.

S. He, Senescence in health and disease, Cell, vol.169, pp.1000-1011, 2017.

J. C. Acosta, A complex secretory program orchestrated by the inflammasome controls paracrine senescence, Nat Cell Biol, vol.15, pp.978-90, 2013.

J. P. Coppe, Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor, PLoS Biol, vol.6, pp.2853-68, 2008.

C. D. Wiley, Analysis of individual cells identifies cell-to-cell variability following induction of cellular senescence, Aging Cell, vol.16, pp.1043-50, 2017.

M. P. Baar, Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging, Cell, vol.169, pp.132-179, 2017.

D. Munoz-espin, Programmed cell senescence during mammalian embryonic development, Cell, vol.155, pp.1104-1122, 2013.

M. Storer, Senescence is a developmental mechanism that contributes to embryonic growth and patterning, Cell, vol.155, pp.1119-1149, 2013.

D. J. Baker, Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan, Nature, vol.530, pp.184-89, 2016.

M. Demaria, An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA, Dev Cell, vol.31, pp.722-755, 2014.

L. Garcia-prat, Autophagy maintains stemness by preventing senescence, Nature, vol.529, pp.37-42, 2016.

O. H. Jeon, Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a proregenerative environment, Nat Med, vol.23, pp.775-81, 2017.

J. I. Jun, The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing, Nat Cell Biol, vol.12, pp.676-85, 2010.

T. Li, Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence, Cell, vol.149, pp.1269-83, 2012.

T. W. Kang, Senescence surveillance of pre-malignant hepatocytes limits liver cancer development, Nature, vol.479, pp.547-51, 2011.

N. E. Sharpless, The differential impact of p16(INK4a) or p19(ARF) deficiency on cell growth and tumorigenesis. Oncogene, vol.23, pp.379-85, 2004.

A. Chiche, Injury-induced senescence enables in vivo reprogramming in skeletal muscle, Cell Stem Cell, vol.20, pp.407-421, 2017.

L. Mosteiro, Tissue damage and senescence provide critical signals for cellular reprogramming in vivo, Science, vol.354, p.4445, 2016.

B. G. Childs, Senescent cells: an emerging target for diseases of ageing, Nat Rev Drug Discov, vol.16, pp.718-753, 2017.

J. A. Ewald, Therapy-induced senescence in cancer, J Natl Cancer Inst, vol.102, pp.1536-1582, 2010.

C. Lopez-otin, The hallmarks of aging, Cell, vol.153, pp.1194-217, 2013.

C. Lopez-otin, Metabolic control of longevity, Cell, vol.166, pp.802-823, 2016.

J. D. Bernet, p38 MAPK signaling underlies a cellautonomous loss of stem cell self-renewal in skeletal muscle of aged mice, Nat Med, vol.20, pp.265-71, 2014.

T. Eggert, Distinct functions of senescence-associated immune responses in liver tumor surveillance and tumor progression, Cancer Cell, vol.30, pp.533-580, 2016.

M. K. Ruhland, Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis, Nat Commun, vol.7, p.11762, 2016.

D. J. Baker, Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders, Nature, vol.479, pp.232-238, 2011.

B. G. Childs, Senescent intimal foam cells are deleterious at all stages of atherosclerosis, Science, vol.354, pp.472-479, 2016.

M. Hoare, NOTCH1 mediates a switch between two distinct secretomes during senescence, Nat Cell Biol, vol.18, pp.979-981, 2016.

I. Sturmlechner, Cellular senescence in renal ageing and disease, Nat Rev Nephrol, vol.13, pp.77-89, 2017.

M. Demaria, Cellular senescence promotes adverse effects of chemotherapy and cancer relapse, Cancer Discov, vol.7, pp.165-76, 2017.

B. G. Childs, Cellular senescence in aging and age-related disease: from mechanisms to therapy, Nat Med, vol.21, pp.1424-1459, 2015.

J. Chang, Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice, Nat Med, vol.22, pp.78-83, 2016.

R. Yosef, Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL, Nat Commun, vol.7, p.11190, 2016.

Y. Zhu, Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors, Aging Cell, vol.15, pp.428-463, 2016.

M. Castedo, Cell death by mitotic catastrophe: a molecular definition, Oncogene, vol.23, pp.2825-2862, 2004.

I. Vitale, Mitotic catastrophe: a mechanism for avoiding genomic instability, Nat Rev Mol Cell Biol, vol.12, pp.385-92, 2011.

C. Dominguez-brauer, Targeting mitosis in cancer: emerging strategies, Mol Cell, vol.60, pp.524-560, 2015.

K. J. Neelsen, Oncogenes induce genotoxic stress by mitotic processing of unusual replication intermediates, J Cell Biol, vol.200, pp.699-708, 2013.

I. Vitale, Multipolar mitosis of tetraploid cells: inhibition by p53 and dependency on Mos, EMBO J, vol.29, pp.1272-84, 2010.

M. Castedo, Cyclin-dependent kinase-1: linking apoptosis to cell cycle and mitotic catastrophe, Cell Death Differ, vol.9, pp.1287-93, 2002.

I. Vitale, Inhibition of Chk1 kills tetraploid tumor cells through a p53-dependent pathway, PLoS One, vol.2, p.1337, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00274811

M. Castedo, Mitotic catastrophe constitutes a special case of apoptosis whose suppression entails aneuploidy, Oncogene, vol.23, pp.4362-70, 2004.

S. Dawar, Caspase-2-mediated cell death is required for deleting aneuploid cells, Oncogene, vol.36, pp.2704-2718, 2017.

L. L. Fava, The PIDDosome activates p53 in response to supernumerary centrosomes, Genes Dev, vol.31, pp.34-45, 2017.

C. Lopez-garcia, BCL9L dysfunction impairs caspase-2 expression permitting aneuploidy tolerance in colorectal cancer, Cancer Cell, vol.31, pp.79-93, 2017.

S. Dawar, Impaired haematopoietic stem cell differentiation and enhanced skewing towards myeloid progenitors in aged caspase-2-deficient mice, Cell Death Dis, vol.7, p.2509, 2016.

J. Puccini, Loss of caspase-2 augments lymphomagenesis and enhances genomic instability in Atm-deficient mice, Proc Natl Acad Sci U S A, vol.110, pp.19920-19945, 2013.

L. Dorstyn, Caspase-2 deficiency promotes aberrant DNAdamage response and genetic instability, Cell Death Differ, vol.19, pp.1288-98, 2012.

L. H. Ho, A tumor suppressor function for caspase-2, Proc Natl Acad Sci U S A, vol.106, pp.5336-5377, 2009.

S. Shalini, Caspase-2 deficiency accelerates chemically induced liver cancer in mice, Cell Death Differ, vol.23, pp.1727-1763, 2016.

S. Mansilla, Mitotic catastrophe results in cell death by caspase-dependent and caspase-independent mechanisms, Cell Cycle, vol.5, pp.53-60, 2006.

T. V. Denisenko, Mitotic catastrophe and cancer drug resistance: A link that must to be broken, Drug Resist Updat, vol.24, pp.1-12, 2016.

O. Surova, Various modes of cell death induced by DNA damage, Oncogene, vol.32, pp.3789-97, 2013.

K. E. Gascoigne, Cancer cells display profound intra-and interline variation following prolonged exposure to antimitotic drugs, Cancer Cell, vol.14, pp.111-133, 2008.

N. Furth, The LATS1 and LATS2 tumor suppressors: beyond the Hippo pathway, Cell Death Differ, vol.24, pp.1488-501, 2017.

M. Castedo, Apoptosis regulation in tetraploid cancer cells, EMBO J, vol.25, pp.2584-95, 2006.

A. Crockford, Cyclin D mediates tolerance of genomedoubling in cancers with functional p53, Ann Oncol, vol.28, pp.149-56, 2017.

N. J. Ganem, Cytokinesis failure triggers hippo tumor suppressor pathway activation, Cell, vol.158, pp.833-881, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01085073

E. H. Hinchcliffe, Chromosome missegregation during anaphase triggers p53 cell cycle arrest through histone H3.3 Ser31 phosphorylation, Nat Cell Biol, vol.18, pp.668-75, 2016.

B. G. Lambrus, A USP28-53BP1-p53-p21 signaling axis arrests growth after centrosome loss or prolonged mitosis, J Cell Biol, vol.214, pp.143-53, 2016.

M. Li, The ATM-p53 pathway suppresses aneuploidyinduced tumorigenesis, Proc Natl Acad Sci U S A, vol.107, pp.14188-93, 2010.

F. Meitinger, 53BP1 and USP28 mediate p53 activation and G1 arrest after centrosome loss or extended mitotic duration, J Cell Biol, vol.214, pp.155-66, 2016.

S. L. Thompson, Proliferation of aneuploid human cells is limited by a p53-dependent mechanism, J Cell Biol, vol.188, pp.369-81, 2010.

G. Manic, CHK1-targeted therapy to deplete DNA replication-stressed, p53-deficient, hyperdiploid colorectal cancer stem cells, Gut, 2017.

J. Huun, Effects of concomitant inactivation of p53 and pRb on response to doxorubicin treatment in breast cancer cell lines, Cell Death Discov, vol.3, p.17026, 2017.

J. Michels, Cisplatin resistance associated with PARP hyperactivation, Cancer Res, vol.73, pp.2271-80, 2013.

T. Shibue, CSCs, and drug resistance: the mechanistic link and clinical implications, Nat Rev Clin Oncol, vol.14, pp.611-640, 2017.

L. Galluzzi, Molecular mechanisms of cisplatin resistance, Oncogene, vol.31, pp.1869-83, 2012.

L. Galluzzi, Systems biology of cisplatin resistance: past, present and future, Cell Death Dis, vol.5, p.1257, 2014.

G. Casinelli, N-Myc overexpression increases cisplatin resistance in neuroblastoma via deregulation of mitochondrial dynamics, Cell Death Discov, vol.2, p.16082, 2016.

P. Tsapras, Caspase involvement in autophagy, Cell Death Differ, vol.24, pp.1369-79, 2017.

L. Galluzzi, No death without life: vital functions of apoptotic effectors, Cell Death Differ, vol.15, pp.1113-1136, 2008.

L. Aram, CDPs: caspase-dependent non-lethal cellular processes, Cell Death Differ, vol.24, pp.1307-1317, 2017.

Y. I. Nakajima, Caspase-dependent non-apoptotic processes in development, Cell Death Differ, vol.24, pp.1422-1452, 2017.

P. Fernando, Neural stem cell differentiation is dependent upon endogenous caspase 3 activity, FASEB J, vol.19, pp.1671-73, 2005.

M. M. Aranha, Caspases and p53 modulate FOXO3A/ Id1 signaling during mouse neural stem cell differentiation, J Cell Biochem, vol.107, pp.748-58, 2009.

S. Ohsawa, Maturation of the olfactory sensory neurons by Apaf-1/caspase-9-mediated caspase activity, Proc Natl Acad Sci, vol.107, pp.13366-71, 2010.

A. Mukherjee, More alive than dead: non-apoptotic roles for caspases in neuronal development, plasticity and disease, Cell Death Differ, vol.24, pp.1411-1432, 2017.

S. Solier, Non-apoptotic functions of caspases in myeloid cell differentiation, Cell Death Differ, vol.24, pp.1337-1384, 2017.

S. De-botton, Platelet formation is the consequence of caspase activation within megakaryocytes, Blood, vol.100, pp.1310-1317, 2002.

Y. Zermati, Caspase activation is required for terminal erythroid differentiation, J Exp Med, vol.193, pp.247-54, 2001.

K. H. Szymczyk, Active caspase-3 is required for osteoclast differentiation, J Cell Physiol, vol.209, pp.836-880, 2006.

E. Arama, Caspase activity and a specific cytochrome C are required for sperm differentiation in Drosophila, Dev Cell, vol.4, pp.687-97, 2003.

P. Fernando, Caspase 3 activity is required for skeletal muscle differentiation, Proc Natl Acad Sci U S A, vol.99, pp.11025-11055, 2002.

Y. Ishizaki, A role for caspases in lens fiber differentiation, J Cell Biol, vol.140, pp.153-161, 1998.

E. Candi, The cornified envelope: a model of cell death in the skin, Nat Rev Mol Cell Biol, vol.6, pp.328-368, 2005.

S. Lippens, Epidermal differentiation does not involve the pro-apoptotic executioner caspases, but is associated with caspase-14 induction and processing, Cell Death Differ, vol.7, pp.1218-1222, 2000.

G. Denecker, Caspase-14 protects against epidermal UVB photodamage and water loss, Nat Cell Biol, vol.9, pp.666-74, 2007.

P. L. Zeeuwen, Epidermal differentiation: the role of proteases and their inhibitors, Eur J Cell Biol, vol.83, pp.761-73, 2004.

A. Mousa, Transglutaminases factor XIII-A and TG2 regulate resorption, adipogenesis and plasma fibronectin homeostasis in bone and bone marrow, Cell Death Differ, vol.24, pp.844-54, 2017.

A. Costanzo, Programmed cell death in the skin, Int J Dev Biol, vol.59, pp.73-78, 2015.

K. S. Lang, Mechanisms of suicidal erythrocyte death, Cell Physiol Biochem, vol.15, pp.195-202, 2005.

P. A. Lang, Suicidal death of erythrocytes in recurrent hemolytic uremic syndrome, J Mol Med (Berl), vol.84, pp.378-88, 2006.

D. S. Kempe, Suicidal erythrocyte death in sepsis, J Mol Med (Berl), vol.85, pp.273-81, 2007.

L. Kaestner, The potential of erythrocytes as cellular aging models, Cell Death Differ, vol.24, pp.1475-77, 2017.

L. Galluzzi, Mitochondrial membrane permeabilization in neuronal injury, Nat Rev Neurosci, vol.10, pp.481-94, 2009.

J. Kers, An overview of pathways of regulated necrosis in acute kidney injury, Semin Nephrol, vol.36, pp.139-52, 2016.

D. L. Vaux, Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells, Nature, vol.335, pp.440-442, 1988.

A. Strasser, Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2, Nature, vol.348, pp.331-334, 1990.

A. Strasser, bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship, Cell, vol.67, pp.889-99, 1991.

A. Strasser, DNA damage can induce apoptosis in proliferating lymphoid cells via p53-independent mechanisms inhibitable by Bcl-2, Cell, vol.79, pp.329-368, 1994.

A. Strasser, Enforced BCL2 expression in B-lymphoid cells prolongs antibody responses and elicits autoimmune disease, Proc Natl Acad Sci U S A, vol.88, pp.8661-8666, 1991.

C. P. Dillon, Molecular cell biology of apoptosis and necroptosis in cancer, Adv Exp Med Biol, vol.930, pp.1-23, 2016.

L. Galluzzi, Necroptosis: mechanisms and relevance to disease, Annu Rev Pathol, vol.12, pp.103-133, 2017.

G. W. Dorn, Novel pharmacotherapies to abrogate postinfarction ventricular remodeling, Nat Rev Cardiol, vol.6, pp.283-91, 2009.

L. Galluzzi, Targeting post-mitochondrial effectors of apoptosis for neuroprotection, Biochim Biophys Acta, vol.1787, pp.402-415, 2009.

A. Ashkenazi, From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors, Nat Rev Drug Discov, vol.16, pp.273-84, 2017.

N. Lalaoui, The molecular relationships between apoptosis, autophagy and necroptosis, Semin Cell Dev Biol, vol.39, pp.63-72, 2015.

D. R. Green, Cell death signaling. Cold Spring Harb Perspect Biol, vol.7, p.6080, 2015.

A. Ashkenazi, Regulated cell death: signaling and mechanisms, Annu Rev Cell Dev Biol, vol.30, pp.337-56, 2014.

M. F. Luciani, Early nucleolar disorganization in Dictyostelium cell death, Cell Death Dis, vol.8, p.2528, 2017.

, Golstein P Conserved nucleolar stress at the onset of cell death, FEBS J, vol.284, pp.3791-3800, 2017.

A. Linkermann, Regulated cell death and inflammation: an auto-amplification loop causes organ failure, Nat Rev Immunol, vol.14, pp.759-67, 2014.

A. M. Dudek, Inducers of immunogenic cancer cell death, Cytokine Growth Factor Rev, vol.24, pp.319-352, 2013.

H. Inoue, Multimodal immunogenic cancer cell death as a consequence of anticancer cytotoxic treatments, Cell Death Differ, vol.21, pp.39-49, 2014.

V. Berghe and T. , Disruption of HSP90 function reverts tumor necrosis factor-induced necrosis to apoptosis, J Biol Chem, vol.278, pp.5622-5651, 2003.

N. Vanlangenakker, TNF-induced necroptosis in L929 cells is tightly regulated by multiple TNFR1 complex I and II members, Cell Death Dis, vol.2, p.230, 2011.

A. D. Garg, Danger signalling during cancer cell death: origins, plasticity and regulation, Cell Death Differ, vol.21, pp.26-38, 2014.

P. Vandenabeele, Immunogenic apoptotic cell death and anticancer immunity, Adv Exp Med Biol, vol.930, pp.133-182, 2016.

C. Hernandez, Damage-associated molecular patterns in cancer: a double-edged sword, Oncogene, vol.35, pp.5931-5972, 2016.

Q. Zhang, Circulating mitochondrial DAMPs cause inflammatory responses to injury, Nature, vol.464, pp.104-111, 2010.

S. Sun, Mitochondrial DAMPs increase endothelial permeability through neutrophil dependent and independent pathways, PLoS One, vol.8, p.59989, 2013.

C. F. Wenceslau, Mitochondrial N-formyl peptides induce cardiovascular collapse and sepsis-like syndrome, Am J Physiol Heart Circ Physiol, vol.308, pp.768-77, 2015.

M. P. Soares, Disease tolerance and immunity in host protection against infection, Nat Rev Immunol, vol.17, pp.83-96, 2017.

J. Gilloteaux, Ultrastructural aspects of autoschizis: a new cancer cell death induced by the synergistic action of ascorbate/ menadione on human bladder carcinoma cells, Ultrastruct Pathol, vol.25, pp.183-92, 2001.

J. M. Jamison, Autoschizis: a novel cell death, Biochem Pharmacol, vol.63, pp.1773-83, 2002.

, 53 ? Vincenzo De Laurenzi 54 ? Ruggero De Maria 55 ? Klaus-Michael Debatin 56 ? Ralph J. DeBerardinis 57 ? Mohanish Deshmukh 58 ? Nicola Di Daniele 59 ? Francesco Di Virgilio 60 ? Vishva M. Dixit 61 ? Scott J. Dixon 62 ? Colin S. Duckett 63 ? Brian D. Dynlacht 64,65 ? Wafik S. El-Deiry 66,67 ? John W. Elrod 68 ? Gian Maria Fimia 69,70 ? Simone Fulda 71,72,73 ? Ana J. García-Sáez 74 ? Abhishek D. Garg 9 ? Carmen Garrido 75,76,77 ? Evripidis Gavathiotis 78, ? Jochen H.M. Prehn 185 ? Hamsa Puthalakath 186 ? Gabriel A. Rabinovich 187,188 ? Markus Rehm 189,190 ? Rosario Rizzuto 191 ? Cecilia M.P. Rodrigues 192 ? David C. Rubinsztein 193 ? Thomas Rudel 194 ? Kevin M. Ryan 83 ? Emre Sayan 195 ? Luca Scorrano 196,197 ? Feng Shao 198 ? Yufang Shi 199,200,201 ? John Silke 47,202 ? Hans-Uwe Simon 111 ? Antonella Sistigu 55,203 ? Brent R. Stockwell 204,205 ? Andreas Strasser 46 ? Gyorgy Szabadkai 191, vol.49, p.237

, The First Affiliated Hospital of Soochow University, Institutes for