Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

The lower rather than higher density charge carrier determines the NH 3 -sensing nature and sensitivity of ambipolar organic semiconductors

Abstract : Despite the extensive studies and great application potentials, the sensing nature of ambipolar organic semiconductor gas sensors still remains unclarified, unlike their inorganic counterparts. Herein, different numbers of thiophenoxy groups are introduced into the phthalocyanine periphery of bis(phthalocyaninato) rare earth semiconductors to continuously tune their HOMO and LUMO energies, resulting in the ambipolar M[Pc(SPh)(8)](2) [M = Eu (1), Ho (2)] and p-type M(Pc)[Pc(SPh)(8)] [M = Eu (3), Ho (4)]. An OFET in combination with direct I-V measurements over the devices from the self-assembled nanostructures of 1-4 revealed the original electron and hole densities (n(e) and n(h)) of 3.6 x 10(15) and 3.6 x 10(18) cm(-3) for ambipolar 1, 9.8 x 10(16) and 6.0 x 10(20) cm(-3) for ambipolar 2, and the original hole density (n(h)) of 2.8 x 10(17) and 2.4 x 10(17) cm(-3) for 3 and 4, respectively. The comparative studies on the sensing behavior of the self-assembled nanostructures of 1-4 revealed that, towards reducing gas NH3, the ambipolar 1 and 2 show an n-type sensing behavior, with the response nature determined by the lower n(e) rather than higher n(h). Meanwhile, the NH3 sensor from 1 with much lower n(e) than 2 displays higher sensitivity. Nevertheless, also towards NH3, 3 and 4 exhibit a p-type response, with the lower carrier density device 4 showing higher sensitivity. Consequently, the originally lower density carrier (hole vs. electron) with a faster charge transporting speed in the ambipolar semiconducting layer determines not only the gas sensing response nature but also the sensitivity. This is also true for the p-type organic semiconductor in terms of the gas sensing sensitivity.
Type de document :
Article dans une revue
Domaine :
Liste complète des métadonnées

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01857261
Contributeur : Icmub - Université de Bourgogne <>
Soumis le : mardi 14 août 2018 - 16:57:38
Dernière modification le : jeudi 14 mai 2020 - 16:28:04

Identifiants

Collections

Citation

Yanli Chen, Xia Kong, Guifen Lu, Dongdong Qi, Yanling Wu, et al.. The lower rather than higher density charge carrier determines the NH 3 -sensing nature and sensitivity of ambipolar organic semiconductors. Materials Chemistry Frontiers, Royal Society of Chemistry, 2018, 2 (5), pp.1009 - 1016. ⟨10.1039/c7qm00607a⟩. ⟨hal-01857261⟩

Partager

Métriques

Consultations de la notice

131