Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

On the analytical expression of the multicompacton and some exact compact solutions of a nonlinear diffusive Burgers’type equation

Abstract : We consider the nonlinear diffusive Burgers' equation as a model equation for signals propagation on the nonlinear electrical transmission line with intersite nonlinearities. By applying the extend sine-cosine method and using an appropriate modification of the Double-Exp function method, we successfully derived on one hand the exact analytical solutions of two types of solitary waves with strictly finite extension or compact support: kinks and pulses, and on the other hand the exact solution for two interacting pulse solitary waves with compact support. These analytical results indicate that the speed of the pulse compactons doesn't depends explicitly on the pulse amplitude as has been expected for long, but rather on the dc-component associated to this trigonometric solution. More interesting, the interactions between the two pulse compactons induce only a phase shift even though they are close together. These analytical solutions are checked by means of numerical simulations. (c) 2018 Elsevier B.V. All rights reserved.
Liste complète des métadonnées

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01862690
Contributeur : Le2i - Université de Bourgogne <>
Soumis le : lundi 27 août 2018 - 15:51:56
Dernière modification le : vendredi 17 juillet 2020 - 14:59:10

Identifiants

Citation

Désiré Ndjanfang, David Yémélé, Patrick Marquié, T.C. Kofané. On the analytical expression of the multicompacton and some exact compact solutions of a nonlinear diffusive Burgers’type equation. Communications in Nonlinear Science and Numerical Simulation, Elsevier, 2018, 65, pp.309 - 322. ⟨10.1016/j.cnsns.2018.05.017⟩. ⟨hal-01862690⟩

Partager

Métriques

Consultations de la notice

359