EQUATIONS AND INTERVAL COMPUTATIONS FOR SOME FRACTALS

Abstract : Very few characteristic functions, or equations, are reported so far for fractals. Such functions, called Rvachev functions in function-based modeling, are zero on the boundary, negative for inside points and positive for outside points. This paper proposes Rvachev functions for some classical fractals. These functions are convergent series, which are bounded with interval arithmetic and interval analysis in finite time. This permits to extend the Recursive Space Subdivision (RSS) method, which is classical in Computer Graphics (CG) and Interval Analysis, to fractal geometric sets. The newly proposed fractal functions can also be composed with classical Rvachev functions today routinely used in Constructive Solid Geometry (CSG) trees of CG or function-based modeling.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01927238
Contributeur : Le2i - Université de Bourgogne <>
Soumis le : lundi 19 novembre 2018 - 16:59:09
Dernière modification le : mercredi 14 août 2019 - 10:46:47

Identifiants

Citation

Lincong Fang, Dominique Michelucci, Sebti Foufou. EQUATIONS AND INTERVAL COMPUTATIONS FOR SOME FRACTALS. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, WORLD SCIENTIFIC PUBL CO PTE LTD, 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE, 2018, 26 (4), pp.1850059. ⟨https://www.worldscientific.com/doi/abs/10.1142/S0218348X18500597?journalCode=fractals⟩. ⟨10.1142/S0218348X18500597 ⟩. ⟨hal-01927238⟩

Partager

Métriques

Consultations de la notice

36