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Abstract

Very few characteristic functions, or equations, are reported so far for fractals. Such func-
tions, called Rvachev functions in function-based modeling, are zero on the boundary, negative
for inside points and positive for outside points. This paper proposes Rvachev functions for
some classical fractals. These functions are convergent series, which are bounded with interval
arithmetic and interval analysis in finite time. This permits to extend the Recursive Space Sub-
division (RSS) method, which is classical in Computer Graphics (CG) and Interval Analysis, to
fractal geometric sets. The newly proposed fractal functions can also be composed with classical
Rvachev functions today routinely used in Constructive Solid Geometry (CSG) trees of CG or
function-based modeling.
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1. INTRODUCTION

Function-based modeling™® is well studied in
Computer-Aided Design (CAD) and Computer
Graphics (CG). It is a generalization of the Con-
structive Solid Geometry (CSG) representation in
which not only primitives, but also composed
objects (e.g. with set operations) are represented
with characteristic functions. A characteristic func-
tion has value zero for points on the boundary, and
takes values of opposite signs for inside and outside
points. In this paper, we use the convention that
the function is negative inside and positive outside
the geometric set.

Algebraic objects such as spheres, quadrics, and
tori, are represented with polynomial functions (e.g.
fx,y,2) = (x—cu)?+(y—cy)?’ +(z—¢2)* —1r?* <0
for a ball of known radius r centered at a given
point (cz, ¢y, ¢;)) or with signed distance functions®
(e.g. for the polygon). The generalization to other
smooth functions such as trigonometric functions or
exponential is also possible.

An arbitrary complex solid is defined using a sin-
gle continuous real-valued function, the zero set of
which is the boundary of the object (it is called a
surface). For example, let A and B be two objects
in R% d > 0, represented with functions fa and
fB. The simplest approach to formalize set oper-
ation between A and B is to represent A N B
with the function fane(p) = max(fa(p), fB(p)),
p € RY and A UB with the function fau(p) =
min(fa(p), fB(p)). The complement of the object
A is represented with the function f.a(p) =
—fa(p). For affine invertible transforms 7 (trans-
lations, rotations, scalings), the function fr(4) for
T(A) is fray(p) = fa(T~'(p)). Rvachev pro-
posed other functions, now known as R-functions, or
Rwvachev functions, to realize set operations between
solids. Mo

Functions representing objects must be com-
putable, i.e. they can be approximated within a
prescribed accuracy- Only continuous functions are
computable” in the sense of “computable num-
bers” or computable analysis. A real number is com-
putable if by definition it is possible to produce a
set of nested intervals converging to it. A function f
is computable if for all computable numbers z, f(x)
is computable. Therefore, only continuous functions
are computable. The equality of two computable
numbers is nondecidable. The nonequality of two
computable numbers is decidable (compute two thin

enough intervals for each, eventually disjoint). For
example, the sign function, —1 for negative, 0 for 0,
1 for positive is noncomputable, more precisely the
computation does not halt for 0.

An advantage of the function-based modeling is
that the boundary is extracted from an approxima-
tion or a cover, computed with a prescribed accu-
racy threshold. The topology of this approxima-
tion may not be equal to the topology of the exact
object, which is anyway noncomputable (since, for
example, the number of connected components is
not a continuous function; moreover for fractals, it
may be infinite).

Interval arithmetic and analysis provide meth-
ods to compute a guaranteed and sharp enclosure
of the values of smooth (i.e. differentiable) func-
tions over an interval, or a box (a box is a vec-
tor of intervals). 5% In Sec. 2.2 this feature is used
by the classical Recursive Space Subdivision (RSS)
method.

Fractals are widely used in geometric model-
ing to represent natural shapesm"” or artifacts,
e.g. the antenna of some cellular phones is a two-
dimensional (2D) Menger sponge. Finding equa-
tions for fractals could bridge geometric model-
ing and fractals and therefore ease fractals’ inte-
gration in geometric modelers. Moreover, it might
provide a feasible way for three-dimensional (3D)
printing of fractal objects. However, for fractal
objects, these equations or Rvachev functions
are not differentiable, and sometimes even not
continuous.

It is possible to extend interval computations
to nonsmooth functions, i.e. functions which are
nowhere or almost nowhere differentiable, and to
noncontinuous functions. We call them fractal func-
tions, because they appear in the function-based
shape modeling of fractal objects.

In this paper, we propose functions, actually con-
vergent series, of some classical fractal objects. 2
These functions are differentiable nowhere or almost
nowhere, though they are usually continuous in
some sense (Lipschitz? Holder* etc.). These
series can be enclosed within intervals#“® some-
times tightly, in finite time. These proposed fractal
functions will give another way to account for frac-
tals into the function-based modeling framework,
and extend the scope of the RSS method, which
may also generate new interesting and challenging
geometric problems.



We summarize the contributions of this paper as
follows: it gives equations (i.e. a characteristic func-
tion which is negative for inside points and posi-
tive for outside points) for some classical fractals; it
shows that exactly one contractant mapping is suf-
ficient in the Iterated Function System (IF'S). These
functions can be bounded with intervals computa-
tions. They can be composed with other classical
Rvachev functionst12

The rest of the paper is organized as follows:
we first introduce the background in Sec. Bl Sec-
tion [3] gives some examples of fractal functions,
which define fractal shapes, and can be enclosed
with interval arithmetics. The fractal functions per-
mit to cover the fractal object or its boundary with
the RSS method. Arising questions are discussed in

Sec. @l

2. BACKGROUND

This section presents methods for computing a
cover of a fractal inside a box. We recall the classical
representations of fractals in Sec. 2.1l Implicit equa-
tions of classical fractals are rarely reported, though
the parametric equation of some fractal curves is
known % Methods for tracing strange attractors like
Julia sets or Hénon attractor were proposed 2V
Methods were presented for ray-casting surfaces
defined by fractal combinations of procedural noise
functions 2123

Section 2.2] presents the classical RSS method,
which can be used when a Rvachev function is avail-
able and is computable with interval analysis. This
method also applies for objects defined with CSG
trees.

In Sec. 2.3, the fractal is defined by an IFS and no
Rvachev function is available. This section presents
a branch and bound method for computing the dis-
tance of a given point to a fractal defined by an
IFS: the latter can be used to compute a cover of
the fractal.

In Sec.[2.4], we consider the case when no Rvachev
function is available and the fractal is the attrac-
tor of orbits which does not diverge to infinity, for
some given computable map f. Examples are Julia
sets, and the Hénon strange attractor*® This sec-
tion presents a graph-based method for computing
a cover of the fractal.

The conclusion to be learned from this work is
that it is simpler and easier to compute a cover of a
fractal object when a Rvachev function is available.

Table 1 Evaluation Cost of Approxima-
tions of R-Functions?4 Relatively to k,
the Recursion Depth.

Fractal Complexity
Sierpinski’s napkin O(k)
Sierpiriski’s carpet O(k)
Levy fractal 02k)
Koch curve o(4k)
Pythagoras fractal o(5%)

2.1. Classical Representations
of Fractals

Fractals can be approximated with a union of sim-
ple geometric primitives (triangles in the example
of the Sierpinski triangle), or with a CSG tree, but
with a small recursion depth?% Traversing this CSG
tree straightforwardly produces a Rvachev function.
But, the evaluation cost of this naive Rvachev func-
tion increases, sometimes exponentially, with the
recursion depth, which limits the depth to a small
constant. Such Rvachev functions for some classi-
cal fractals are proposed in Ref. [24] their evalua-
tion cost is given in Table [I. Though this approach
is sufficient for visualization purposes, it does not
solve the challenging problem tackled here. In this
paper, we will define Rvachev functions with con-
stant size but with infinite recursive depth, i.e. con-
vergent series, and we will use interval analysis to
bound them in finite time.

Some fractals are defined as the attractor of an
IFS. Rice®” proposes a method to compute a bound-
ing box of this kind of fractals. Barnsley'" proposes
the chaos game to sample them. We are not aware
of any method to compute a Rvachev function of a
fractal defined by an IFS.

Some fractals are defined as attractors of nondi-
vergent orbits, for a given function, like the Hénon
strange attractor or Julia sets (or the related Fatou
sets). Michelucci et al.r and Paiva et al.“ proposed
the graph-based methods to compute a cover of such
fractals. This method is presented in Sec. 2.4]

Some fractals have a combinatorial definition,
with a finite automata (for instance, the von Koch
curve or the dragon curve), or with exotic numera-
tion systems H0-0120

A Rvachev function is advantageous because it
avoids to design special algorithms to deal with frac-
tals: the RSS algorithm can manage them, and they
can be combined easily with other Rvachev shapes



(a shape is Rvachev if its Rvachev function is avail-
able). Examples of Rvachev functions for some clas-
sical fractals are given in the following sections.

2.2. The RSS Method and Rvachev
Function

This section recalls the classical method?® used to
compute a cover of a geometric set A, inside a
given box B, when a Rvachev function fa is known,
and is computable with interval analysis. In 2D, to
cover the object inside a box B = (X,Y’), where
X and Y are two intervals, the method computes
an interval Z = [u,v] enclosing f(X,Y’), with some
interval computation?® If v is negative, then the
box (X,Y) is completely inside the object: it is
added to the cover. If u is positive, then the box
(X,Y) is completely outside. Otherwise, u < 0 < v,
and nothing can be said because the interval [u,v]
may overestimate the exact range. If the box is
small enough, so that no more subdivision can be
done, the conservative choice is to insert the box
in the cover. Otherwise, the box is subdivided, and
the sub-boxes are recursively evaluated. This recur-
sive subdivision of 2D space is a classical method
used to tessellate objects, perform volume compu-
tations, etc. within the framework of function-based
modeling. For instance, the marching cube method
computes the boundary of an object at the voxel
level. Fryazinov et al®' and Martin et al.2® compared
several interval computations for this algorithm.
They considered only differentiable polynomial
functions.

2.3. Branch and Bound Method
and IFS

In this section, the fractal F' is defined as the attrac-
tor of an IFS and no Rvachev function is available.

The branch and bound method makes it possible
to use the RSS method in this case. The branch
and bound method computes intervals enclosing the
unsigned (nonnegative) distance from a given point
p to F. Typically, the interval width decreases at
each iteration of the algorithm, which stops when a
tight enough interval is reached. This method can
be used to compute the (unsigned) distance from
a box B with center p to F. Let r = [r~,rT] be
the radius of the smallest ball B(p,r) enclosing the
box B. The value r is represented with an interval
to account for inaccuracy (for example when r =
v2). Let d = [d~,d*] be an interval enclosing the

unsigned distance from p to F: d is computed with
the branch and bound algorithm. Then an interval
enclosing the distance from B to F' is

d(B,F) € max(0,d~ —rT),d" +r1]. (1)

We now explain the branch and bound method
for computing an interval of the distance from a
given point p to the fractal F. F is the attractor of
a given IFS F = {f1,..., fn}. The maps f1,..., fn,
are contractant, usually affine, transformations. Let
p € (0,1) be the contracting factor of F, thus

I fi(x) = fi(y)ll < pllz = yl|

The fractal F is nonempty: It contains at least the
fixed points of the transformations f;.
We recall the definition of Hutchinson’s operator:

Vie [l,n],Va,Vy,

H:X - HX) = fi(X),

=1

where X is any compact set. The fixed point of H is
the attractor of the IFS ¥, i.e. the fractal F. Com-
putationally, convenient sets X are unions of balls,
possibly overlapping: the image of a ball B(c,r) by
a map f; € F is included in the ball B(f;(c),r X p),
the center of which is f;(c), and the radius of which
is 7 x p. We assume a ball B(C, R) enclosing F is
known: C' is its center, and R its radius 224

For convenience, we redefine H as follows: for a

ball B(e, ),

n

H(B(C,T)) = U B(fi(c)vr X 10)7

=1

and for a union of balls, the image by H is the
union of the images of balls by H. The underlying
approximation in this redefinition is conservative.
Define U? := {B(C, R)} and U**! := H(U*). Each
Uk is a union of n* balls, all with radii R x pF.
Each U* is a cover of the fractal F. Moreover, this
cover is fair: U¥ N'F is never empty. As point sets,
Ukt c U*, and F = limy_,, U*.

A virtual tree of balls can be associated in a nat-
ural way to the set of balls in U*, k € N: the root
is the bounding ball B(C, R) in U°, and each ball
B(c,r) has n sons B(f;(c),p x r). UF is the union
of balls at depth k in the tree.

An e-cover of F is a cover by a set of balls the
radii of which are all smaller or equal to €. The
Hausdorff distance between F and an e-cover of F



is at most €. Let k be the integer:

Rxpkge:k:’r%-‘, 2)

so U¥ is an e-cover of F. The distance to F of a
given point p is (up to €) the distance of p to the
union of balls U,

This gives a method to compute a fair e-cover U*.

This also suggests a first, naive and brute force
method to compute (an interval of) the distance of
p to F: generate all n* balls of U* and compute
which one is the closest to p. It is clearly exponen-
tial time O(n*). The branch and bound principle®”
speeds up this first naive method. Suppose some
greedy method finds a ball in the e-cover, thus with
radius smaller than e, and the distance of this ball
to p is at most 1. Then, it is useless to compute
H(B(c,r)), H(H(B(c,7))), etc., i.e. the subtree of
B(c,r), as soon as the distance from p to B(c,r) is
greater than 7: The ball B(c,r) is too far, and its
sons in the tree are even further away.

Regarding the greedy method, for a given ball
B, it only considers the closest ball to p amongst
f1(B),..., fn(B). It may give a nonoptimal result,
but it quickly provides an upper bound of the
distance.

In practice, the branch and bound method™”
is much faster than the naive method computing
U* with k defined in Eq. [@). However, it remains
slower than the interval analysis method presented
in Sec. 2.2l But, to apply the latter, an equation of
the fractal is needed.

2.4. Attractors of Nondivergent
Orbits

In this section, no IFS and no Rvachev function
is available. Nonetheless, interval analysis permits
to compute in a reliable way covers of fractals like
the Julia sets or the Hénon attractor'®2? which are
attractors of orbits O(p) = {p, f(p), f(f(P)),...,}
that are not diverging. For example, for Hénon
attractor, the function f is defined as

fi(z,y) €R? = f(z,y) = 1 +y —az® bx) € R?,

where a and b are parameters, a« = 1.4 and b = 0.3
for the famous Hénon strange attractor. For Julia
sets, f(z) = 22 + ¢, where c € C is a parameter.
The method operates as follows: assume, for sim-
plicity, that a bounding box of the attractor is
known. This bounding box is partitioned into a set C

of square or rectangular cells C;, with i = 1, ..., n?.

Each cell C in € is associated to a vertex c in a
graph G, and each time there is a point p € C such
that f(p) € C’, i.e. interval analysis detects that
f(C) N C’ is not empty, an arc ¢ — ¢ is added
to the graph G. Then, the strongly connected com-
ponents of the graph G are computed, with Tar-
jan’s method.®? So, each vertex c is associated to
its strongly connected component scc(c). A vertex
¢ in G, corresponding to a cell C € C, is transient
if there is no arc ¢ — c¢ in the graph G, and ¢
belongs to a strongly connected component which
contains only the vertex c itself, i.e. scc(c) = {c}. In
other words, if ¢ is transient, no orbit for f start-
ing in the cell C can return to C. Thus, transient
cells contain no point of the attractor. Nontransient
cells cover the attractor. In comparison, the orbit
method often gives wrong results'® Y typically near
repulsive points of the fractal, which cause “leaks”.

An interesting feature of this method is that it
can be used iteratively: Let C be the first set of cells,
and let C; be the set of nontransient cells. Then,
cells in Cq can be subdivided again, and the same
algorithm is reexecuted, to obtain a thinner cover
Cay, etc. Some (2, 3, or 4) iterations yield an exact
cover much thinner than the pictures produced with
the orbit method. This method can be modified to
compute periodic points in the attractor 2 It should
also be used with IFS: an arc links ¢ to ¢ if for some
function fi in the IFS, there is a point p € C such
that fx(p) € C’, i.e. CN fk_l(C’) is nonempty, or
equivalently fx(C) N C’ is nonempty.

Once a cover of the fractal is known, it may seem
easy to estimate the distance of a given point p
to the fractal, using the cover instead, represented
with some quadtree or octree data structure. How-
ever, the cover is exact (no part of the attractor is
outside the cover, which is usually tight), but it may
happen that some cells in the cover set are actually
empty, i.e. that they contain no point of the frac-
tal (remark that this problem cannot occur with
the branch and bound method (Sec. 233))). A possi-
bility is to make the cover fair: for each cell, com-
pute a periodic point inside it2Y or prove that it is
empty.

3. COMPUTING ENCLOSURES
OF FRACTAL FUNCTIONS

This section presents functions for some fractals
and the methods to compute their enclosures. To
define fractal functions, the most basic function is



the distance to the integers. Let x € R, the distance
function is defined as

dz(z) = min(z — [z], [z] — x), (3)
where |z] is the floor of x, and [z] is the ceiling
of . The function dz has period 1; it is piecewise
linear, continuous, bounded, i.e. dz(R) = [0,1/2].
The interval enclosing dz(X) for a given interval
X = [xg,x1] is easily computed. Furthermore, the
odd function dz, and the even function dz, can be
defined as follows:

r 1 1
le (:L') = 2dZ (5 + Z) - 5; <4>
dz,(v) = —dz, (z). (5)
It is obvious that dz, (R) € [—1,1] and dz, (R) €

[—%, %] Figure [l shows the graph of the functions
dz, lev and dZO~

3.1. The Takagi Function
Let
k .
dy(2'z
Ty = Y0 220 )
i=0

then Too(x) is the Takagi function (as usual,
Too(x) = limg_oo Ti(z)). Since dz is bounded, the
series converges. The Takagi function has period 1;
it is continuous but not differentiable. It is possible
to compute an interval enclosing Too (X)) for a given
interval X = [zg, z1] as follows:

dz(Ql [CEQ, 331])

n

Too([z0,21]) = )

91

=0

00 .
s dz (2 [zo, 71])
2i
i=n—+1

0 1 2 3 4
0 1 2 3 4
0 1 2 3 4

Fig. 1 From top to bottom: the dz function is the distance
to integers, the odd function dz, (x is inside if |z] is odd),
the even function dz,,.

" dz(2i[ﬂf0, 551]) 1
D R LF Tl

The first part of the right-hand side can be com-
puted with intervals, or exactly with rational arith-
metic when zq, 1 are rational.

Figure B shows the fractal {(z,y)|y = Tx(z)},
for x € [0,1],y € [0,1], the recursive subdivision
process of the outward rounded interval arithmetic
is shown on the left.

Notably, the Takagi function is Holder continu-
ous, that is

11—«
(T(22) = T@)| £ ;—gaslo —m1|".
We computed the value of the function T at the
center of the considered interval X, and then get
the enclosure of T'(X). This method gives the same
subdivision as the naive interval arithmetic in our
implementation.

3.2. The Devil’s Staircase

The devil’s staircase can be defined®! as FE..(z),
where

DYCEDY liz] (7)

The floor function is not continuous, but it can be
computed with interval arithmetic (it is possible to
enclose the image of an interval by the floor func-
tion) easily, because it is increasing, an enclosure
of Exo([z0,21]) is [Eso(20), Eso(x1)]. Obviously, the
series converges.

Fig. 2 The Takagi curve, also called the Blancmange curve.
Left: the recursive subdivision process. Right: the cover
obtained with 12 levels of recursion.



LT
2

Fig. 3 The fractal object {(z,y) |y = Foo(x)}, where Fo is
the devil’s staircase function. Left: the recursive subdivision
process using interval evaluation of the function. Right: the
resulting cover.

The devil’s staircase function is an example of a
function that is continuous, but not absolutely con-
tinuous. It is also called Cantor’s function: it is con-
stant for values outside the Cantor set (or Cantor
dust). It is not Lipschitz continuous. See Fig. [3] for
a graph of the function, traced with the recursive
subdivision method and outward rounded interval
arithmetic.

3.3. Distance to Cantor Dust

This section presents a function to get the signed
distance to the covers of the one-dimensional (1D)
Cantor dust (or Cantor set). The signed distance is
positive for a point outside and negative for a point
inside the cover.

The Cantor set is created by repeatedly removing
the open middle third of a set of line segments. Let
Cy be the obtained set of the kth step in this pro-
cess, then the cover of Cy is the segment, or interval
[0,1]. The cover Cy is the union of %Ck,l and of
% + %Ck,l. The limit of C, when k — oo is the
famous Cantor set.

To define the signed distance function to the Can-
tor set, we pose f(z) = dyz(z) — 3 for convenience.

f is bounded, i.e. f(z) € [~%,3]. Then the signed

distance to the cover Cy, is defined as
ok f (3tx)
Cule) =i 5

which is indeed convergent when £ — oo, and
Coo() is the signed distance function to the Cantor
set.

The RSS method is applied to the set defined by
the equation y — Ci(z) = 0. It is essential that f
is bounded, so the series converges, and it is pos-
sible to lower and upper bound the error at each
step. Figure [ shows the graph of these functions
for Cy(z),k =0,...,5 for x € [0,1], y € [-0.5,0.5].
Figure [ shows the graph of the function Cy(x).

Fig. 4 The graph of the cover of the curve {(z,y)|y —
Cip(z) =0}, k=0,...,5,z €[0,1], and y € [~0.5,0.5].

W

‘ | gty

Fig. 5 The graph of the signed distance to the Cantor dust
Coo. Left: the recursive subdivision algorithm. Right: the
resulting cover.

3.4. Sierpinski’s Gasket

Sierpiriski’s gasket is another icon of fractals, see
Fig. Bl It has various relatives3Z and its 3D variant
is also called Menger’s sponge. Define a series:
ko f(3',3'y)

Sk(xuy) = 1'111:161 3i 3

(8)

where f(z,y) = 3 — min(dz(z),dz(y)). The signed
distance to the union of holes in Sierpinski’s gasket
is Seo(, y). It is the generalized Rvachev function of
the Sierpinski gasket. Since f is bounded, the series
clearly converges. It is then possible to compute
with intervals an enclosure of the signed distance to
the Sierpinski’s gasket for any point and any box.

Fig. 6 Sierpiiiski’s gasket (sometimes called Menger’s
sponge). Left: the recursive subdivision method with outward
rounded interval arithmetic. Right: the corresponding cover.



Figure [6] shows the result of the RSS method with
outward-rounded interval computations.

3.5. Sierpinski’s Triangle

Figure [0 shows the Sierpiniski’s triangle. Let
dp(x) = ¢ mod 1 and f(x,y) be the signed dis-
tance to the tiling of triangles {(z,y)|dn(y) <
dpm(x)}. The function f(z,y) = dn(y) — dm(x) can
be used, and it was used, to produce our first fig-
ures, e.g. see Fig. [7 although it uses the noncon-
tinuous function, i.e. modulo 1. Once a function
f is available, the function for the signed distance
to the holes in the Sierpinski’s triangle is S (z,y),
where
ko f(2'x,2%)
Sp(2,y) = max =~ (9)
A definition for the function f which does not
depend on a discontinuous function (like the modulo

A I A
oW
NS

N

Fig. 7 Sierpiniski’s triangle. Left: the recursive subdivision

method with outward-rounded interval arithmetic. Right: the
corresponding cover.

B
B’
AlA
'BC ‘BC!
AB AB
C : :
¢ Cli, BB Ci . |

Fig. 8 Partition of the plane with vertical stripes A (even)
and A’ (odd), horizontal stripes B (even) and B’ (odd),
diagonal stripes C (even) and C’ (odd). Then, the union
of these strips gives a tiling with triangles. An advantage
of this definition is that it uses only the basic, continuous
function dy.

1 function) can be found. As shown in Fig. B,
first define functions for stripes, for example, the
odd function (@) is zero for integers z, nega-
tive in the open intervals (1,2),(3,4),...,(2n + 1,
2n + 2), and positive in the open intervals (2,3),
(4,5),...,(2n,2n+1). In other words, dz, (x) is the
signed distance functions to stripes 2Z + [1,2]. The
function for the complement is the even function
(B)). Then, define vertical stripes A and A’, hori-
zontal stripes B and B’, diagonal stripes C and C’
(e.g. considering dz,(x +y), dz, (x +y)). Then, the
tiling of triangles can be obtained as (ANBNC’)U
(ANB'NC)U(A’'NBNC)U(A'NnB' NC’), see
Fig. Bl

3.6. Koch Flake

A parametric equation was proposed by Allouche
et al.3¥ but there is no characteristic function up
to now for the best of our knowledge. This section
provides an equation for the von Koch snowflake.
We use dp,(r) = z mod 1, defined in previous
subsection to define the tiling of triangles shown
on the left side of Fig. @, where {(z,y)|dm(x —

%) + dm(%) < 1} are the white triangles, and

{(@.y) ldm(z = Z2) + dm(Z%) = 1} are the gray
triangles. The vertices of the lattice are Z(1,0) +
Z(3. %) = (i+ 3. °54).i.d € Z.

Let

da(z,y) = minmin \/($ —2ij)? + (y = vij)®
i

—V/3/6,

where (x;,y;) are the vertices of the lattice, then
da(z,y) < 0 defines the disks which are centered at
these vertices, as shown on the right side of Fig. [@.
Since da(x,y) is bounded by the length of the edges
of the tiling, the series clearly converges. We give
two more methods to define da(z,y) in Secs. B.G.l
and B.6.2]

Fig. 9 Tiling of triangles and the Koch flake with & = 0 for
ze[-1,1,y€[-1,1].



Now, we define a function

k %
min M' (10)

Fk‘(x’ y) i=0 3/[/

The limit of Fi(z,y) when k — 400 is the expres-
sion of the signed distance to the Koch flake.
Furthermore, let

then

if Fi(z,y) <0
and Fy(x,y)

< Fp(T'(z,y)),

if Fi,(T(z,y)) <0
and Fy.(T'(z,y))
< Fi(z,y),

0 otherwise

Fk(xa y)

ﬁ;(:ﬂ,y) = *Fk(T(xay))

gives a definition of a double Koch flake, which is
also a signed distance function to the boundary of
the double Koch flake. An example of the recur-
sively subdivision process is shown in Fig. [0l Fur-
thermore, we also show a shaded single Koch flake
and a shaded double Koch flake in Fig. [Tl

It suffices to use a specific tuned procedure to
evaluate d,,(z) for intervals. These fractal functions
should be inserted as a Directed Acyclic Graph
(DAG) node, so when it is evaluated, the specific

Fig. 10 Single Koch flake (upper row) and double Koch
flake (lower row) for z € [—1,1], y € [—1,1]. Left: the recur-
sive subdivision with outward rounded interval arithmetic.
Right: the corresponding cover.

Fig. 11 The Koch flakes with &k = 0,1,2 for z € [—1,1],
y € [—1,1]. Upper row: single Koch flake. Lower row: double
Koch flake.

(tuned) procedure is called. Though the method
proposed in the previous subsection can be used
to get continuous functions, here, we propose meth-
ods only using dz(x). Following these methods, the
Koch flake can be computed using interval arith-
metic. In our implementation, we use () to com-
pute the functions in a given box.

3.6.1.
Let

2D affine map

M(:L',y) -

o |
— [a)
AR
< 08
~_

and denote (2/,y')! =
3y + @), let
)= \/Ad2(a

=min{f(2",y), f(z",y")} <0

defines the expected disks on the right side of Fig.[.

)+ 12d2 (y) — V/3/6,

then

dA(xa y)

3.6.2. 3D affine map

Here, we give another method to get the disks by
projecting a 3D lattice to the Oxy plane. We search
the isometry which transforms the equilateral lat-
tice in the Oxy plane to the plane P with equation
z 4+ y + z = 1. The integer vertices in P form an
equilateral 2D lattice, see Fig. [[21
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Fig. 12 The lattice on the plane z + y + z = 1. Right: the
diamond, circle, and square points are the projections of the
integer vertices of the planes t +y+2 =0, x+y+2z =1, and
T+ 1y + z = 2, respectively. Left: part of the lattice is shown.

; . — V6
In the Ozy plane, the lattice has length a = 3,

and is the set of vertices Z(«,0) + Z(3a, @a), see
Fig. M2 Implicitly, z = 0 for points in the Ozy
plane.

Now, the point (0,0,0) of the Ozy plane is
mapped to the point (1,0,0) in the plane P. The
vector (1,0,0) of the Oxy plane is mapped to the
vector (—%,%,0) in the plane P. The vector
(0,1,0) of the Ozy plane is mapped to the vec-

tor (—\}—, \/— \/—) The vector (0,0, 1) of the Oxy
plane is mapped to the vector (-, L), Let M

fff

be the 4 x 4 matrix (we use homogeneous coordi-
nates as usual) of the isometry mapping the Oxy
plane to P. We get

-1 -1 1 1
V2 V63 10 0 0
Lol Ly 010 0
ORRV(IVE] =M = M.
9 1 0 010
0 — — 0
V6 V3 0 0 01
0 0 0 1
Thus, the matrix M is known. The matrix M

permits to compute the distance to vertices of
the equilateral lattice for the point (z,y): let
(«',y, 2/, 1)t = M(z,y,0,1)!, then the distance of
(z,y) to the equilateral lattice da(x,y) (with side

length o = @) can be computed as dz(z') +

dz(y'") + dz(2') for the Manhattan distance, or as
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VB + B (y) +d3(+) for the Euclidean dis-
tance, or as max(dz(z'),dz(y'), dz(2")) for L.

Remark. We can consider irrational planes: the
“cut-and-project” method intersects a slice around
anonrational (hyper) plane and a periodic tiling (Z¢
for instance), and projects it on the (hyper)plane
to obtain an aperiodic tiling:****' Our method will
likely generate an aperiodic fractal tiling.

3.6.3. Signed distance to a single
Koch flake

In this section, we give another way to define the
Koch flake. The vertices defined previously are the
centers of the Koch flake. Without the loss of gen-
erality, we propose our method for the Koch flake
which is centered at the origin point.

Let d(z,y) = /22 + y?> — r < 0 be a signed dis-
tance function to a disk with radius » = /3/6,
which is the biggest disk inside the Koch flake. Let
(p,0) be the polar coordinate of a point (z,y), and
(',y') = M(x,y) is a transformation of a point in
the plane, which is

o =5 (e (e (2)
(3 (2))

Then, we give the expression of the signed distance
to the Koch flake as follows:
o d(M*(x,y))

min 3k;

F(z,y) = min

(11)
Thus, outward-rounded interval arithmetic can be
used for the Koch flake. In Fig. [[3] a Koch flake is
generated using this method. We compute the func-
tion using (), the recursive subdivision procedure
is also shown.

Fig. 13 The graph of the signed distance to the Koch flake.
Left: the recursive subdivision algorithm. Middle: the von
Koch curve with k = 2. Right: the resulting von Koch curve.



4. DISCUSSION AND
CONCLUSION

This section formalizes our definition of fractals.
First, we rely on some lattice L; the simplest are
72 and Z?; we also use the 2D equilateral lattice

Z(1,0)+Z(3, ?) for von Koch. We then define the
distance function of point p to L, i.e. to the vertices
of L, called d(p,L). We then define a seed set S,
which is a periodic pattern, copied at each vertex of
L. In the simplest case, the pattern is a disk, so the
characteristic function of S is fs(p) = d(p,L) — r,
where r is the radius of the disk. Finally, we use
exactly one contractant similitude 7'; let o be its
eigenvalue: |o| < 1. We define Sy, = UF_T%(S). The
limit of S when k — oo is the fractal, actually an
infinite and periodic tiling of this fractal pattern.
Note that it is an IFS with only one contractant
transform. To define the characteristic function of
S, we use the classical property:

d(p,T*(8)) = |o|*d(T " (p),S)

(reusing the classical idea routinely used to raytrace
CSG scenes). Thus, the characteristic function of
Sk is

k . .
fs.(p) = min o d(T(p),8).  (12)
Because the function d(p € R2%S) is bounded
below and above, the terms of (I2]) converge in
a controllable way, so it is possible to compute
quickly and accurately the characteristic function
of the fractal. Finally, note that instead of T%, we
can use T}, = f(k)oT*og(k), which composes T*
with some translation and rotation f(k) and g(k)
depending on k, as in (IIJ).

In this paper, fractal functions have the form
> K(gzz) , where the sum >~ can be replaced with
min or max, and where the seed or kernel func-
tion K is bounded, which ensures convergence and
computability (“enclosability”). In passing, note the
analogy with the noise/turbulence Perlin’s function
proposed by Ken Perlin in 1985 to generate proce-

dural 3D textures3°:

=

-1 . i
NOISE(z) = $° Noise(v'z).

a’L

I
=)

i

where Noise(x) is the Perlin’s noise®® or Mandel-
brot’s F-noise function ! N is typically between 6
and 10, b is some positive number greater than 1,
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most commonly it will be powers of 2. The param-
eter a controls how rough the final NOISE(z) func-
tion will be. Small values of a, e.g. 1, give very rough
functions, larger values give smoother functions.

We conclude with some remarks or arising issues.
In function-based modeling, expressions are often
represented with DAG, roughly trees with shareable
nodes. A leave is a symbol x,y, z, a number or an
interval, and nodes are binary operators (+, —, X,
etc) or special functions (cos, sin, etc.). To account
for fractal functions, it is convenient to introduce
new kind of nodes, i.e. dz node, or a d(MZ+ T,z €
R%) node, where MZ%+T is the image of the lattice
Z% after some affine map © — Mz + T, and some
new DAG to store ming2, K(i,r), max2, K(i,),
> izi, K(i,x), where the expression for K is also
represented with some DAG.

We found our first Rvachev functions by trials
and errors. Is it possible to find by algorithm the
Rvachev functions (for instance, a signed distance
function) for other classical fractals, like the Julia
set 2130 or defined by an IFS™ or a Controlled
IFS (remember that in CIFS, some patterns are for-
bidden, like T? if T} is one of the IFS transforms),
or finite automata? It is an open question, linked to
Number Theory, Lattice Theory, Automata Theory
and Harmonic Analysis.

Is it possible to reconstruct a signed distance
function from a picture? The analogy with har-
monic analysis, Fourier transform, may give some
insight. Note also the analogy of this question with
procedural 3D textures: the latter are synthetized
with Fourier analysis from 3D pictures e.g. by Ghaz-
anfarpour and Dischler 2%

How to contain the wrapping effect (e.g. dy,,(z) =
x mod 1) for these interval computations?

For fractal functions f which are not Lipschitz
continuous, but Holder continuous, it seems pos-
sible to generalize the centered evaluation form of
interval analysis with an Holder evaluation form.
Remember that a function is (k,h) Holder when
If(b) — f(a)| < k(b — a)*. Thus, the issue of com-
puting (k, h) values for nondifferentiable functions
defined by DAG arises.

This paper shows that nondifferentiable func-
tions, and even noncontinuous functions like the
modulo 1 function, are computable (enclosable) in
polynomial time with interval arithmetic. These
functions are Rvachev functions of geometric
objects with fractal geometry. This paper pro-
vides Rvachev functions for some classical frac-
tals, which were found by trials and errors. These



Rvachev functions permit to extend the classical
RSS method to fractals. We wonder if it is algo-
rithmically possible to get these functions from a
given IFS, or a finite automaton.
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