Lysosomal Signaling Licenses Embryonic Stem Cell Differentiation via Inactivation of Tfe3
(1, 2)
,
(3, 4, 5, 6)
,
(1, 2)
,
(1)
,
(7, 1)
,
(1, 2)
,
(1)
,
(3, 5, 6, 8)
,
(5, 6)
,
(9, 10)
,
(5, 6)
,
(11, 12)
,
(5, 6)
,
(13)
,
(3, 5, 6, 4)
,
(5, 6)
,
(3, 5, 6, 4)
,
(14)
,
(3, 5, 6, 4)
,
(5, 6, 15, 16)
,
(3, 5, 6, 4)
,
(14)
,
(11, 12)
,
(11, 12)
,
(1)
,
(1)
,
(5, 6)
,
(3, 5, 6, 4)
,
(1)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Pierre Vabres
- Fonction : Auteur
- PersonId : 899466
Laurence Duplomb-Jego
- Fonction : Auteur
- PersonId : 994669
Yannis Duffourd
- Fonction : Auteur
- PersonId : 994654
Thibaud Jouan
- Fonction : Auteur
- PersonId : 995276
Jean-Baptiste Rivière
- Fonction : Auteur
- PersonId : 994656
Joerg Betschinger
Connectez-vous pour contacter l'auteur
- Fonction : Auteur correspondant
- PersonId : 1042420
Connectez-vous pour contacter l'auteur
Résumé
Self-renewal and differentiation of pluripotent murine embryonic stem cells (ESCs) is regulated by extrinsic signaling pathways. It is less clear whether cellular metabolism instructs developmental progression. In an unbiased genome-wide CRISPR/Cas9 screen, we identified components of a conserved amino-acid-sensing pathway as critical drivers of ESC differentiation. Functional analysis revealed that lysosome activity, the Ragulator protein complex, and the tumor-suppressor protein Folliculin enable the Rag GTPases C and D to bind and seclude the bHLH transcription factor Tfe3 in the cytoplasm. In contrast, ectopic nuclear Tfe3 represses specific developmental and metabolic transcriptional programs that are associated with peri-implantation development. We show differentiation-specific and non-canonical regulation of Rag GTPase in ESCs and, importantly, identify point mutations in a Tfe3 domain required for cytoplasmic inactivation as potentially causal for a human developmental disorder. Our work reveals an instructive and biomedically relevant role of metabolic signaling in licensing embryonic cell fate transitions.