V. Badrinarayanan, A. Kendall, and R. Cipolla, Segnet: A deep convolutional encoder-decoder architecture for image segmentation, IEEE Transactions on Pattern Analysis & Machine Intelligence, issue.12, pp.2481-2495, 2017.

G. J. Brostow, J. Fauqueur, and R. Cipolla, Semantic object classes in video: A high-definition ground truth database, Pattern Recognition Letters, 2008.

G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla, Segmentation and recognition using structure from motion point clouds, ECCV (1), pp.44-57, 2008.

L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, Y. et al., Semantic image segmentation with deep convolutional nets and fully connected crfs, 2014.

L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, Y. et al., Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs, vol.40, pp.834-848, 2018.

L. Chen, Y. Zhu, G. Papandreou, F. Schroff, A. et al., Encoder-decoder with atrous separable convolution for semantic image segmentation, 2018.

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler et al., The cityscapes dataset for semantic urban scene understanding, Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

A. Eitel, J. T. Springenberg, L. Spinello, M. Riedmiller, and W. Burgard, Multimodal deep learning for robust rgb-d object recognition, Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, pp.681-687, 2015.

A. Garcia-garcia, S. Orts-escolano, S. Oprea, V. Villenamartinez, and J. Garcia-rodriguez, A review on deep learning techniques applied to semantic segmentation, 2017.

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, Vision meets robotics: The kitti dataset, International Journal of Robotics Research, 2013.

J. S. Harchanko and D. B. Chenault, Water-surface object detection and classification using imaging polarimetry, Polarization Science and Remote Sensing II, vol.5888, p.588815, 2005.

C. Hazirbas, L. Ma, C. Domokos, and D. Cremers, Fusenet: Incorporating depth into semantic segmentation via fusion-based cnn architecture, Asian Conference on Computer Vision, pp.213-228, 2016.

S. Hwang, J. Park, N. Kim, Y. Choi, S. Kweon et al., Multispectral pedestrian detection: Benchmark dataset and baseline, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.1037-1045, 2015.
DOI : 10.1109/cvpr.2015.7298706

M. Jaritz, R. De-charette, E. Wirbel, X. Perrotton, and F. Nashashibi, Sparse and dense data with cnns: Depth completion and semantic segmentation, 2018.
DOI : 10.1109/3dv.2018.00017

URL : https://hal.archives-ouvertes.fr/hal-01858241

A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems, pp.1097-1105, 2012.
DOI : 10.1145/3065386

URL : http://dl.acm.org/ft_gateway.cfm?id=3065386&type=pdf

Z. Li, Y. Gan, X. Liang, Y. Yu, H. Cheng et al., Lstm-cf: Unifying context modeling and fusion with lstms for rgb-d scene labeling, European Conference on Computer Vision, pp.541-557, 2016.

J. Long, E. Shelhamer, D. , and T. , Fully convolutional networks for semantic segmentation, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.3431-3440, 2015.

L. Ma, J. Stückler, C. Kerl, and D. Cremers, Multi-view deep learning for consistent semantic mapping with rgb-d cameras, Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International Conference on, pp.598-605, 2017.

M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine Learning, 2012.

L. Moisan, P. Moulon, and P. Monasse, Automatic homographic registration of a pair of images, with a contrario elimination of outliers, Image Processing On Line, vol.2, pp.56-73, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00711852

O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for biomedical image segmentation, International Conference on Medical image computing and computer-assisted intervention, pp.234-241, 2015.

A. Valada, A. Dhall, and W. Burgard, Convoluted mixture of deep experts for robust semantic segmentation, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Workshop, State Estimation and Terrain Perception for All Terrain Mobile Robots, 2016.

A. Valada, G. Oliveira, T. Brox, and W. Burgard, Deep multispectral semantic scene understanding of forested environments using multimodal fusion, The 2016 International Symposium on Experimental Robotics, 2016.

V. Vapnik, Statistical learning theory, 1998.

R. Walraven, Polarization imagery, Optical Polarimetry: Instrumentation and Applications, vol.112, pp.164-168, 1977.
DOI : 10.1117/12.7972655

L. B. Wolff, Polarization vision: a new sensory approach to image understanding, Image and Vision computing, vol.15, issue.2, pp.81-93, 1997.

F. Yu and V. Koltun, Multi-scale context aggregation by dilated convolutions, 2015.