B. Shao, Z. Hu, Q. Liu, S. Chen, and W. He, Fatal accident patterns of building construction activities in China, Saf Sci, vol.111, pp.253-263, 2018.

C. Q. Poh, C. U. Ubeynarayana, and Y. M. Goh, Safety leading indicators for construction sites: a machine learning approach, Autom Constr, vol.93, pp.375-386, 2018.

. B. Stats and . Gov, Census of fatal occupational injuries (CFOI) -current and revised data, 2017.

W. Fang, L. Ding, H. Luo, and P. E. Love, Falls from heights: a computer vision-based approach for safety harness detection, 2018.

, Autom Constr, vol.91, pp.53-61

C. Zhou and L. Y. Ding, Safety barrier warning system for underground construction sites using internet-of-things technologies, Autom Constr, vol.83, pp.372-389, 2017.

H. Li, X. Yang, M. Skitmore, F. Wang, and P. Forsythe, Automated classification of construction site hazard zones by crowd-sourced integrated density maps, Autom Constr, vol.81, pp.328-339, 2017.

N. Pradhananga and J. Teizer, Automatic spatio-temporal analysis of construction site equipment operations using GPS data, Autom Constr, vol.29, pp.107-122, 2013.

Y. Yu, H. Guo, Q. Ding, H. Li, and M. Skitmore, An experimental study of real-time identification of construction workers' unsafe behaviors, Autom Constr, vol.82, pp.193-206, 2017.

M. W. Park and I. Brilakis, Continuous localization of construction workers via integration of detection and tracking, Autom Constr, vol.72, pp.129-142, 2016.

J. Teizer and T. Cheng, Proximity hazard indicator for workerson-foot near miss interactions with construction equipment and geo-referenced hazard areas, Autom Constr, vol.60, pp.58-73, 2015.

I. Awolusi, E. Marks, and M. Hallowell, Wearable technology for personalized construction safety monitoring and trending: review of applicable devices, Autom Constr, vol.85, pp.96-106, 2018.

H. Cai, A. R. Andoh, X. Su, and S. Li, A boundary condition based algorithm for locating construction site objects using RFID and GPS, Adv Eng Inform, vol.28, issue.4, pp.455-468, 2014.

Y. Zheng, Trajectory data mining: an overview, ACM Trans Intell Syst Technol, vol.6, issue.3, pp.1-41, 2015.

B. H. Albanna, I. F. Moawad, S. M. Moussa, and M. A. Sakr, Semantic trajectories: a survey from modeling to application. Information fusion and geographic information systems, pp.59-76, 2015.

H. Li, M. Lu, S. C. Hsu, M. Gray, and T. Huang, Proactive behaviorbased safety management for construction safety improvement, Saf Sci, vol.75, pp.107-117, 2015.

M. Baslyman, R. Rezaee, D. Amyot, A. Mouttham, R. Chreyh et al., Real-time and location-based hand hygiene monitoring and notification: proof-of-concept system and experimentation, Pers Ubiquit Comput, vol.19, pp.667-688, 2015.

U. Lopez-novoa, U. Aguilera, M. Emaldi, D. López-de-ipina, I. Pérez-de-albeniz et al., Overcrowding detection in indoor events using scalable technologies, Pers Ubiquit Comput, vol.21, issue.3, pp.507-519, 2017.

S. Spaccapietra, C. Parent, M. L. Damiani, J. A. De-macedo, F. Porto et al., A conceptual view on trajectories, Data Knowl Eng, vol.65, issue.1, pp.126-146, 2008.

M. Arslan, C. Cruz, A. M. Roxin, and D. Ginhac, Spatio-temporal analysis of trajectories for safer construction sites, Smart and Sustainable Built Environ, vol.7, issue.1, pp.80-100, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01874491

B. Guc, M. May, Y. Saygin, and C. Körner, Semantic annotation of GPS trajectories, Proceedings of the eleventh AGILE international conference on geographic information science, pp.1-9, 2008.

Z. Yan, N. Giatrakos, V. Katsikaros, N. Pelekis, and Y. Theodoridis, SeTraStream: semantic-aware trajectory construction over streaming movement data. Advances in spatial and temporal databases, Lect Notes Comput Sci, vol.6849, pp.367-385, 2011.

M. Buchin, A. Driemel, M. V. Kreveld, and V. Sacristan, An algorithmic framework for segmenting trajectories based on SpatioTemporal Criteria, Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp.202-211, 2010.

S. Dabiri and K. Heaslip, Inferring transportation modes from GPS trajectories using a convolutional neural network, Transportation Res. Part C: Emerg Technol, vol.86, pp.360-371, 2018.

W. Balzano and M. Sorbo, SeTra: a smart framework for GPS trajectories' segmentation. International Conference on Intelligent Networking and Collaborative Systems Salerno, Italy 362-368, 2014.

S. Sankararaman, P. K. Agarwal, T. Mølhave, J. Pan, and A. P. Boedihardjo, Model-driven matching and segmentation of trajectories, Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp.234-243, 2013.

C. Panagiotakis, N. Pelekis, I. Kopanakis, E. Ramasso, and Y. Theodoridis, Segmentation and sampling of moving object trajectories based on representativeness, IEEE Trans Knowl Data Eng, vol.24, issue.7, pp.1328-1343, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00585610

Z. Yan, D. Chakraborty, C. Parent, S. Spaccapietra, and K. Aberer, SeMiTri: a framework for semantic annotation of heterogeneous trajectories, Proceedings of the 14th International Conference on Extending Database Technology (EDBT/ICDT '11), pp.259-270, 2011.

Z. Yan, Semantic trajectories: computing and understanding mobility data. Doctoral dissertation, 2011.

F. Wu, Z. Li, W. C. Lee, H. Wang, and Z. Huang, Semantic annotation of mobility data using social media, Proceedings of the 24th International Conference on World Wide Web, pp.1253-1263, 2015.

B. Furletti, P. Cintia, C. Renso, and L. Spinsanti, Inferring human activities from GPS tracks, Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing (UrbComp '13), pp.1-8, 2013.

T. P. Nogueira, R. B. Braga, C. T. De-oliveira, and H. Martin, FrameSTEP: a framework for annotating semantic trajectories based on episodes, J of Expert Systems with Appl, vol.92, pp.533-545, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01616492

V. De-graaff, R. A. De-by, and M. Van-keulen, Automated semantic trajectory annotation with indoor point-of-interest visits in urban Pers Ubiquit Comput areas, Proceedings of the 31st Annual ACM Symposium on Applied Computing (SAC '16), pp.552-559, 2016.

R. Fileto, C. May, C. Renso, N. Pelekis, D. Klein et al., The Baquara2 knowledge-based framework for semantic enrichment and analysis of movement data, Data Knowl Eng, vol.98, pp.104-122, 2015.

F. Wu, H. Wang, Z. Li, W. C. Lee, and Z. Huang, SemMobi: a semantic annotation system for mobility data, Proceedings of the 24th International Conference on World Wide Web, p.15, 2015.

, , pp.255-258

C. Wan, Y. Zhu, J. Yu, and Y. Shen, SMOPAT: mining semantic mobility patterns from trajectories of private vehicles, Inf Sci, vol.429, pp.12-25, 2018.

G. Cai, K. Lee, and I. Lee, Mining mobility patterns from geotagged photos through semantic trajectory clustering, Cybern Syst, vol.49, issue.4, pp.234-256, 2018.

K. Heijden, Scenarios: the art of strategic conversation, 2005.

J. M. Carroll, Scenario based design. Handbook of humancomputer interaction, pp.383-406, 2009.

;. Kontakt and . Bbeacons, , 2018.

C. T. Lu, P. R. Lei, W. C. Peng, and J. Su, A framework of mining semantic regions from trajectories, International Conference on Database Systems for Advanced Applications, pp.193-207, 2011.

D. Ashbrook and T. Starner, Using GPS to learn significant locations and predict movement across multiple users, Pers Ubiquit Comput, vol.7, issue.5, pp.275-286, 2003.

A. T. Palma, V. Bogorny, B. Kuijpers, and A. Lo, A clusteringbased approach for discovering interesting places in trajectories, Proceedings of the ACM symposium on Applied computing, pp.863-868, 2008.

C. Cruz, Semantic trajectory modeling for dynamic built environments, IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp.468-476, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01677073

R. Fileto, M. Krüger, N. Pelekis, Y. Theodoridis, and C. Renso, Baquara: a holistic ontological framework for movement analysis using linked data, International Conference on Conceptual Modeling, pp.342-355, 2013.

V. Bogorny, C. Renso, A. R. De-aquino, F. De-lucca-siqueira, and A. Lo, Constant-a conceptual data model for semantic trajectories of moving objects, Trans GIS, vol.18, issue.1, pp.66-88, 2014.

M. S. Mohammadi, M. Isabelle, L. Thérèse, and C. F. , A semantic modeling of moving objects data to detect the remarkable behavior, AGILE, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01577679

Z. Yan, C. Parent, S. Spaccapietra, and D. Chakraborty, A hybrid model and computing platform for spatio-semantic trajectories, Extended Semantic Web Conference, pp.60-75, 2010.

S. Zhang, J. Teizer, and N. Pradhanang, Global positioning system data to model and visualize workspace density in construction safety planning, Proceedings of the 32nd International Symposium on Automation and Robotics in Construction, 2015.

A. M. Costin, J. Teizer, and B. Schoner, RFID and BIM-enabled worker location tracking to support real-time building protocol and data visualization, Journal of Information Technology in Construction (ITcon), vol.20, issue.29, pp.495-517, 2015.

H. Mahmoud and N. Akkari, Shortest path calculation: a comparative study for location-based recommender system, World Symposium on Computer Applications & Research (WSCAR), pp.1-5, 2016.

L. Heng, D. Shuang, M. Skitmore, H. Qinghua, and Y. Qin, Intrusion warning and assessment method for site safety enhancement, Saf Sci, vol.84, pp.97-107, 2016.

A. Carbonari, A. Giretti, and B. Naticchia, A proactive system for real-time safety management in construction sites, Autom Constr, vol.20, issue.6, pp.686-698, 2011.

M. Arslan, C. Cruz, and D. Ginhac, Semantic enrichment of spatiotemporal trajectories for worker safety on construction sites, Procedia Computer Science, vol.130, pp.271-278, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02073566

Z. Riaz, M. Arslan, A. K. Kiani, and S. Azhar, CoSMoS: a BIM and wireless sensor based integrated solution for worker safety in confined spaces, Autom Constr, vol.45, pp.96-106, 2014.

. Autodesk, , 2018.