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GODBILLON-VEY SEQUENCE AND FRANÇOISE ALGORITHM

PAVAO MARDEŠIĆ, DMITRY NOVIKOV, LAURA ORTIZ-BOBADILLA,
AND JESSIE PONTIGO-HERRERA

Abstract. We consider foliations given by deformations dF + εω of exact
forms dF in C2 in a neighborhood of a family of cycles γ(t) ⊂ F−1(t).

In 1996 Françoise gave an algorithm for calculating the first nonzero term
of the displacement function ∆ along γ of such deformations. This algorithm
recalls the well-known Godbillon-Vey sequences discovered in 1971 for investi-
gation integrability of a form ω. In this paper, we establish the correspondence
between the two approaches and translate some results by Casale relating types
of integrability for finite Godbillon-Vey sequences to the Françoise algorithm
settings.

1. Introduction

Let γ0 ⊂ C2 be a regular curve, Σ a transversal to γ0, F a holomorphic function
defined on a tubular neighborhood U ⊂ C2 of γ0, formed by regular curves γ(t) ⊂
F−1(t), t ∈ F (Σ), with γ0 = γ(t0).

Consider the integrable foliation dF = 0 and its holomorphic deformation

dF + εω = 0 (1.1)
in U . We are interested in the displacement function ∆ (holonomy along γ minus
identity) of (1.1). Here ∆(t) denotes the holonomy of (1.1) along γ(t). It can be
developped as

∆(t) =
∑
i≥1

εiMi(t). (1.2)

The functions Mi(t) are called Melnikov functions. If ∆ ≡ 0, this means that
(1.1) has a first integral in a neighborhood of γ(t). If not, then there exists a first
non-zero Melnikov function Mµ.

1.1. Françoise algorithm. Françoise algorithm allows to compute the first nonzero
Melnikov function Mµ. Let us first recall the following classical Lemma.

Lemma 1.1. Given a holomorphic one-form ω and a family of cycles γ(t) ⊂
{F−1(t)}, the following conditions are equivalent:

(i) The form ω verifies ∫
γ

ω ≡ 0. (1.3)
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(ii) There exists a function r holomorphic in a neighborhood of γ such that

dF ∧ (ω − dr) ≡ 0. (1.4)

(iii) There exist functions g and r holomorphic in a neighborhood of γ such that

ω = gdF + dr. (1.5)

Note that the functions g and r are univalued in U but in general do not extend
to polynomial, nor even univalued functions in C2.

Recall, the classical result of Poincaré and Pontryagin:

M1(t) = −
∫
γ(t)

ω.

If M1 ≡ 0, then, by Lemma 1.1,

ω = g1dF + dr1,

and in that case, Françoise [3] proves the following theorem (see also [13], [7], [8],
[4], [5], [11], [12], [10]):

Theorem 1.2. Let (1.2) be the displacement function of (1.1). Assume that
Mi(t) ≡ 0, for i = 1, . . . , k. Then Mk+1(t) = (−1)k+1

∫
γ(t)

gkω, where g0 = 1

and gi, ri verify
gi−1ω = gidF + dri, i = 1, . . . , k. (1.6)

The existence of the decomposition (1.6), follows by induction from Lemma 1.1.

Definition 1.3. We call any pair (gi, ri), verifying (1.6) an i-th Françoise pair
associated to the deformation (1.1) and call the sequence (gi, ri), i = 0, 1, . . . a
Françoise sequence. We say that the length of a Françoise sequence is `, if ` is the
smallest index such that g`+1 = 0. If there does not exist such an index, we say that
the sequence is of infinite length.

1.2. Godbillon-Vey sequence. On the other hand, the classical Godbillon-Vey
sequence is associated to a foliation defined by a single one form

ω = 0. (1.7)
It is a sequence of one-forms ω0 = ω, ωi, i = 1, . . . such that the formal one-form

Ω = dε+ ω0 +
∑
i=1

εi

i!
ωi (1.8)

in C2 × C verifies the formal integrability condition

Ω ∧ d̃Ω = 0. (1.9)
Here d̃ = dε + d denotes the total differential with respect to all variables x, y, ε.

Condition (1.9) is equivalent to

dω0 = ω0 ∧ ω1,
dω1 = ω0 ∧ ω2,
· · · · · ·
dωn = ω0 ∧ ωn+1 +

∑n
k=1

(
n
k

)
ωk ∧ ωn−k+1.

We say that the Godbillon-Vey sequence is of length n if the forms ωk vanish for
k ≥ n.
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Definition 1.4. Let K be a differential field, G a function and KG the extension
of K by G. We say that the extension KG is: Darboux, Liouville or Riccati,
respectively, if it belongs to a finite sequence of field extensions starting from the
field K. The extensions in each step are either algebraic or given respectively by
solutions of the equations dG = η0, dG = Gη1 + η0 or dG = G2η2 +Gη1 + η0, with
ηi one-forms with coefficients in the corresponding field extensions.

In that case, we call the function G Darboux, Liouville or Riccati with respect to
K.

In [1], Casale relates the length n of the Godbillon-Vey sequence to the type of
first integral of the foliation given by (1.7):

Theorem 1.5.
(i) There exists a Godbillon-Vey sequence of length 1 if and only if (1.7) has

a Darboux first integral.
(ii) There exists a Godbillon-Vey sequence of length 2 if and only if (1.7) has

a Liouvillian first integral.
(iii) There exists a Godbillon-Vey sequence of length 3 if and only if (1.7) has

a Riccati first integral.

Here we develop a version of Godbillon-Vey sequences well-adapted to studying
a deformation of an integrable foliation given by (1.1). Recall that on the level
ε = 0 it is integrable (with first integral F ). The Godbillon-Vey sequence gives a
condition for verifying if this integrability extends to ε 6= 0.

We define the form
Ω = Rdε+ (dF + εω)G, (1.10)

with
G =

∑
i=0

εiGi, R =
∑
i=0

εiRi+1 (1.11)

unknown functions and G0 ≡ 1. The form (1.10) of Ω comes from the requirement
to define the same foliation as (1.1) on each level ε = const.

We give a relative version of the definition of different types of first integral for
the deformation (1.1).

Definition 1.6. We denote by KF,ω the field associated to the deformation (1.1).
That is, the smallest differential field in a tubular neighborhood U of a cycle γ0
containing the functions given by coefficients of dF and ω.

Let Fε =
∑`
i=0 ε

iFi, ` <∞, be a first integral of (1.1). We say that it is Darboux,
Liouville or Riccati, respectively, if all Fi are in the corresponding extension of the
field KF,ω.

Theorem 1.7. [6] There exists a solution (G,R) of the equation

Ω ∧ d̃Ω = 0, (1.12)

if and only if the deformation preserves formal integrability along γ i.e. ∆ ≡ 0.

Proof. Indeed, if there exists a solution (G,R) of (1.7), then by Frobenius theorem,
Ω defines a foliation in a neighborhood of (γ(t), 0) in C3 transversal to ε = 0. It
follows from the existence of this foliation that the integrability on the level ε = 0
is preserved on nearby levels. �
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We will also consider the Godbillon-Vey equation up to order k with Ω, G,R
given by (1.10) and (1.11):

Ω ∧ d̃Ω = 0 mod εk+1. (1.13)

Definition 1.8. We call any pair (Gi, Ri), verifying (1.13) an i-th Godbillon-Vey
pair associated to the deformation (1.1), (Gi, Ri), i = 0, 1, . . . is the Godbillon-Vey
sequence associated to the deformation. We say that the length of a Godbillon-Vey
sequence associated to the deformation is `, if ` is the smallest index such that
G`+1 = 0. If there does not exist such an index, we say that the sequence is of
infinite length.

Remark 1.9. Note that the length is associated to any Françoise sequence or
Godbillon-Vey sequence associated to the deformation (1.1).

However, one deformation (1.1) can have Françoise sequences (or Godbillon-
Vey sequence) of different lengths. The minimal length is well defined and one can
choose a Françoise sequence so that all gk = 0, for k > `. The same applies for the
Godbillon-Vey sequences.

Françoise pairs (gi, ri) and Godbillon-Vey pairs (Gi, Ri) exist for all i = 1, 2, 3, . . .
if and only if the deformation preserves integrability along γ.

2. Main theorems

In this section we state our two main results. The first establishes the relation-
ship between the Françoise pairs and the Godbillon-Vey pairs associated to the
deformation. In particular it shows that the minimal length of Françoise sequences
and Godbillon-Vey sequences coincide:

Theorem 2.1.
(i) The Melnikov functions Mi, i = 1, . . . , k, are identically equal to zero if and

only if one can solve the equation

Ω ∧ d̃Ω = 0 mod εk+1, (2.1)

(ii) For each choice of the Françoise sequence (gi, ri), i = 1, . . . , k, the Godbillon-
Vey sequence (Gi, Ri), i = 1, . . . , k, can be chosen verifying the equations

Gi = (−1)igi, Ri = (−1)i+1iri. (2.2)

(iii) If Ω verifies (2.1) then
a) there exists a function N = 1 +

∑k
i=1 ε

ini such that

Ω = Nd̃Fε mod εk+1.

Then the function Fε is of the form

Fε = F +

k∑
i=1

(−1)i+1εiri. (2.3)

and
d̃Fε = R̃dε+ G̃ (dF + εω) . (2.4)

b) Let G̃ and R̃ be given in (2.4) and (Gi, Ri), i = 1, . . . , k, be its coeffi-
cients as in (1.11). Then the functions (gi, ri), i = 1, . . . , k, given by
(2.2) are Françoise pairs.
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Our second result gives the type of local first integral Fε of the deformation (1.1)
if the length of its Françoise sequence is finite. The first result is that the first
integral is in a finite sequence of extensions of Darboux type. The second shows
that it is in a single extension of Liouvillian type.

Theorem 2.2. Let ηε = dF + εω as in (1.1) be such that there exists a Françoise
sequence of finite length `.

(i) Then (1.1) admits a univalued first integral which is Darboux with respect
to the field KF,ω of the deformation (1.1).

(ii) Then there exists a meromorphic form η̃ε verifying the Godbillon-Vey se-
quence of length 2:

dηε = ηε ∧ θ̃ε
dθ̃ε = 0,

such that there exists a (possibly multivalued) first integral F̃ε of (1.1) ver-
ifying

dF̃ε = fηε,

where
df = fθ̃ε

is a (possibly multivalued) function in a tubular neighborhood U of the cycle
γ0.

In particular, the function f belongs to a Liouville extension of KF,ω and
F̃ε belongs to a Darboux extension of this Liouville extension.

Remark 2.3. Note that we are restricting our study to a tubular neighborhood U
of a cycle γ0. A first integral Fε which is Darboux in U can be more complicated
(Liouville, Riccati,...) when studied globally.

Remark 2.4. In Theorem 2.2 (ii) we prove in particular that if the deformation
(1.1) has a finite Françoise sequence, then it has a Liouvillian first integral. The
converse is an interesting question.

Remark 2.5. In Theorem 2.2 we suppose that (1.1) has a Françoise sequence of
finite order. What happens in the case of ` = ∞? In particular, is it possible to
give a condition assuring that a deformation (1.1) has a Liouville or a Riccati first
integral in these terms?

3. Proof of Theorem 2.1

Proof. We first prove the direct implication of the statement (i), the converse will
follow from (iii)(b). If the functions Mi identically vanish for i = 1, . . . , k, then one
can build a first integral Fε of dF + εω mod εk+1 in the following way: extend
F to transversal Σ to γ × {0} in C3 = C2

x,y × Cε as F (x, y, ε) = F (x, y), and
extend it to a neighborhood U of γ × {0} in C3 by the flow. The extension Fε
is a multivalued function, but different branches of Fε agree mod εk+1 on Σ by
assumption, and therefore everywhere in U . In other words, in the decomposition
Fε = F +

∑
i≥1 ε

iFi, Fi = Fi(x, y), the functions Fi are univalued for i = 1, . . . , k.
This implies that in the decomposition

d̃Fε = (Fε)
′
ε dε+ (dF + εω)G,
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the coefficients (Fε)
′
ε , G are univalued modulo terms of order ≥ k+ 1, and we take

Ω := jk−1ε (Fε)
′
ε dε + (dF + εω) jkεG, where jkε denotes the k-th jet with respect to

ε. Then Ω verifies (2.1).
Using (1.6), the proof of (ii) follows from the computation:

(dF + εω)

(
1 +

k∑
i=1

(−1)iεigi

)
=dF +

k∑
i=1

εi
(
(−1)igidF + (−1)i−1gi−1ω

)
=dF +

k∑
i=1

εi(−1)i−1dri mod εk+1,

where g0 ≡ 1. Therefore, by (2.2) and (1.11),

Ω = Rdε+G(dF + εω) =

(
k∑
i=1

(−1)i−1iεi−1ri

)
dε+ dF +

k∑
i=1

εi(−1)i−1dri

=d̃

(
F +

k∑
i=1

εi(−1)i−1ri

)
mod εk+1

is closed up to order εk+1 and therefore satisfies (2.1).

We prove statement (iii)(a) and (iii)(b) simultaneously by induction. We define
weights of monomials by posing w(x) = w(y) = w(dx) = w(dy) = 0 and w(ε) =

w(dε) = 1, so d and d̃ preserve weights. We will denote by ok any collection of
terms of weight > k. In these notations, (2.1) is equivalent to

Ω ∧ d̃Ω = ok+1. (3.1)

Let Nj = 1 +
∑j
i=1 ε

ini. We construct the function N = Nk by induction.
Consider first k = 0. A simple computation shows that

Ω ∧ d̃Ω = dF ∧ dε ∧ (ω − dR1) + o1,

so, simplifying by ∧dε, (3.1) for k = 0 is equivalent to

dF ∧ (ω − dR1) = 0.

By Lemma 1.1, this equation can be solved if and only if
∫
γ
ω ≡ 0, i.e. if and only

if the first Françoise condition M1 ≡ 0 is satisfied. Therefore, the existence of Ω
satisfying (2.1) for k = 0 is equivalent to the first Françoise condition, and we can
choose r1 in (1.6) to be equal to R1,

ω = dr1 + g1dF.

Hence,
Ω = r1dε+ (dF + εω)(1 + εβ1) + o1 (3.2)

for some function β1. Therefore,

Ω = [r1dε+ (dF + εω)(1− εg1)] (1 + ε(β1 + g1)) + o1 = N1d̃Fε,1 + o1,

where N1 = 1 + ε(β1 + g1) and Fε,1 = F + εr0.
Now, let k > 0 and assume (3.1). In particular, it means that Ω ∧ d̃Ω = ok. By

induction, we have

Ω = Nk−1d̃Fε,k−1 + ok−1, where Fε,k−1 = F + εr0 − . . .+ (−1)k−2εk−1rk−1.

Define
Θ = N−1k−1Ω = d̃Fε,k−1 + θk + ok,
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where θk is homogeneous of weight k. We have Θ ∧ d̃Θ = Ω ∧ d̃Ω = ok.
But d̃Θ = d̃θk has weight k. Therefore

Θ ∧ d̃Θ = dF ∧ d̃θk + ok.

Note that Θ has form (1.10), with Gi, Ri as in (2.2) for i ≤ k−1. Separating terms
of weight k, we get

θk = εk−1Rkdε+ εkGkdF + (−1)k−1εkgk−1ω.

Therefore

0 = dF ∧ d̃θk = εk−1dF ∧ dε ∧
(
(−1)k−1kgk−1ω − dRk

)
. (3.3)

As Θ is a solution of (2.1), this equation is solvable, which, by Lemma 1.1, means
that

∫
γ
gk−1ω ≡ 0, i.e. that the k-th Melnikov function vanishes identically. More-

over, (3.3) implies
kgk−1ω = (−1)k−1dRk + kgkdF,

i.e. Françoise decomposition (1.6) of gk−1ω with k-th Francoise pair (gk, rk), such
that Rk = (−1)k−1krk.

Therefore

Θ =
(
r0 + . . .+ εk−1(−1)k−1krk

)
dε

+ (dF + εω)
(
1 + . . .+ (−1)k−1εk−1gk−1 + εkGk

)
+ ok =

=
(
1 + εk(Gk + (−1)k−1gk)

)
d̃Fε,k + ok,

where Fε,k = F + εr0 − . . .+ (−1)k−1εkrk, and

Ω = Nkd̃Fε,k + ok, Nk = Nk−1
(
1 + εk(Gk + (−1)k−1gk)

)
,

as required. �

4. Proof of Theorem 2.2

Proof. Proof of (i): Let (gi, ri), i = 0, 1, 2, . . . be a Françoise sequence and assume
that gi = 0, for i ≥ `+ 1 (see Remark 1.9). Let

ηε = dF + εω, G =
∑̀
i=0

(−1)iεigi, Fε = F +
∑̀
i=1

(−1)i+1εiri. (4.1)

It follows from the definition of Françoise pairs (1.6) that

Gηε = dFε. (4.2)

Differentiating (1.6) and dividing by dF (that is, applying the Gelfand-Leray de-
rivative), one obtains

dgi =
dgi−1 ∧ ω

dF
+ gi−1

dω

dF
=: ηi−1.

By induction, from the Definition 1.4, gi is Darboux, for i = 0, . . . , `. It now follows
from (1.6) that ri, i = 1, . . . , `, is Darboux as well and by Definition 1.6, the first
integral Fε is Darboux with respect to the field KF,ω.

Proof of (ii): Let ηε, G and Fε be as in (4.1). Now from (4.2) it follows that

dηε =
dG−1

G−1
∧G−1dFε = θε ∧ ηε, for θε =

dG−1

G−1
.
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Hence, dθε = 0. The two equations together give a Godbillon-Vey sequence of
length 2 in a Liouville extension of the space of forms with coeffients in KF,ω in
(x, y) ∈ U and holomorphic with respect to the parameter ε.

Now Singer’s theorem [9] (see also [2]) gives that there exists a form θ̃ε with
coeffcients in KF,ω (holomorphic with respect to ε) verifying the same Godbillon-
Vey equations:

dηε = ηε ∧ θ̃ε,

dθ̃ε = 0.

That is θ̃ε is closed. Hence, there exists a (possibly multivalued) function f defined
in U such that

df = fθ̃ε.

One verifies that the form fθ̃ε is closed. This means that there exists a (possibly
multivalued) function F̃ε verifying

dF̃ε = fηε.

�

5. Classical Godbillon-Vey sequences and examples

Let Ω be the form given by (1.10). We apply the classical Godbillon-Vey condi-
tion (1.9) to the form

Ω

R
= dε+ η0 + εη1 + . . .+ εi

i! ηi + . . .

Comparing to the closed form (1.10), we conclude that the forms η1, . . . defined
by

ηε =
∑ εi

i!
ηi =

dFε
dεFε

=
dF +

∑∞
i=1 ε

i(−1)i−1dri∑∞
i=1(−1)i−1iεi−1ri

(5.1)

from a Godbillon-Vey sequence of dFR1
:

η0 = R−11 dF, η1 = R−11 (2R2dF + dR1), . . . ,

and the forms
η̃1 = 2R−11 (R2dF + dR1), . . . , η̃i = Ri−11 ηi,

form a Godbillon-Vey sequence of dF . This sequence could be infinite.
In classical setting one starts from a given foliation ω = 0 for ε = 0, and looks for

a simplest perturbation ωε = 0 such that the form dε+ωε is integrable. Results of [2]
say that if the foliation ω = 0 is Darboux integrable, Liouville integrable or Riccati
integrable, then one can find perturbations such that ωε either does not depend on
ε or is polynomial in ε of degree 1 or 2, respectively, i.e. that the Godbillon-Vey
sequence has finite length.

In this paper, given a perturbation (1.1), and we construct a one-form Ω such
that its restriction to the planes {ε = const} defines the same foliation as the initial
one. In other words, unlike the classical settings, here the perturbation of the
foliation is almost uniquely prescribed, the only freedom being the coefficients G,R
in (1.10). Thus the length of the corresponding Godbillon-Vey sequence can be
infinite even if ωε is Liouville integrable for all ε.
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Example 5.1. Let F = x2 + y2 and ω = y2dx. For symmetry reasons, the pertur-
bation (1.1) is integrable. Computation shows that

gn =
(−1)n

n!
xn, rn =

(−1)n

n!

(
2

n+ 2
xn+2 − xny2

)
. (5.2)

Then a first integral is given by

Fε =x2 + y2 +

∞∑
n=1

(−1)n−1εnrn = eεx
(
y2 + 2

x

ε
− 2 ε−2

)
,

d̃Fε =eεx(εy2 + 2x)dx+ 2eεxydy,

and therefore the Godbillon-Vey forms ωi are Taylor coefficients in ε of(
∂

∂ε
Fε

)−1
dFε = dF +

∞∑
n=1

εiωi. (5.3)

One can see that this series is not polynomial in ε, though the first integral Fε is of
Liouville type. Some authors call this type of functions generalized Darboux.

Example 5.2. For a trivially integrable perturbation ω = gdF , the Françoise pairs
are given by gi = gi, i = 1, . . ., and r1 ≡ 1, ri = 0 for i = 2, . . .. Therefore the first
integral is

Fε = F + ε, R ≡ 1, G = 1 +

∞∑
i=1

(−1)iεigi = (1− εg)−1,

and
Ω = dε+ (dF + εgdF )(1− εg)−1 = dFε.

Example 5.3. For a Darboux integrable perturbation (1.1) with ω = F dr
r we have

gi = (−1)i
(log r)i

i!
, ri = −Fgi,

so

Fε = F +

∞∑
i=1

(−1)i−1εiri = F + F

∞∑
i=1

εi
(log r)i

i!
= Feε log r = Frε.

Then

d̃Fε = Frε log rdε+
(
rεdF + εFrε−1dr

)
= Frε log r

[
dε+

(
dF

F log r
+ ε

dr

r log r

)]
.

Therefore the forms

ω1 =
dr

r log r
, ωi = 0, i = 2, . . .

form a Godbillon-Vey sequence for dF
F log r , and hence

ω̃1 =
dr

r log r
+
dF

F
+
dr

r
, ω̃i = 0, i = 2, . . .

form a Godbillon-Vey sequence for dF , so this Godbillon-Vey sequence for dF + εω
has length 1.
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