Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Multimodal Images Classification using Dense SURF, Spectral Information and Support Vector Machine

Abstract : The multimodal image classification is a challenging area of image processing which can be used to examine the wall painting in the cultural heritage domain. In such classification, a common space of representation is important. In this paper, we present a new method for multimodal representation learning, by using a pixel-wise feature descriptor named dense Speed Up Robust Features (SURF) combined with the spectral information carried by the pixel. For classification of extracted features we have used support vector machine (SVM). Our database was extracted from acquisition on cultural heritage wall paintings that contain four modalities UV, Visible, IRR and fluorescence. The experimental results show that the overall accuracy of this method reaches 98.1%, 92.01%, 98.2% and 94.705% in visible, fluorescence image, UVR and IRR respectively.
Liste complète des métadonnées

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-02141064
Contributeur : Imvia - Université de Bourgogne <>
Soumis le : lundi 27 mai 2019 - 16:31:46
Dernière modification le : vendredi 17 juillet 2020 - 14:54:11

Lien texte intégral

Identifiants

Citation

Hanan Anzid, Gaëtan Le Goïc, Aissam Bekkari, Alamin Mansouri, Driss Mammass. Multimodal Images Classification using Dense SURF, Spectral Information and Support Vector Machine. Procedia Computer Science, Elsevier, 2019, 148, pp.107-115. ⟨10.1016/j.procs.2019.01.014⟩. ⟨hal-02141064⟩

Partager

Métriques

Consultations de la notice

300