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Abstract—Remote photoplethysmography (rPPG) is a recent
technique for estimating heart rate by analyzing the pulsatility
of skin hue using regular cameras. To determine the quality of the
measurement, many existing methods are based on the signal-to-
noise ratio (SNR) calculated in the frequency domain. However,
the Fast Fourier Transform (FFT) operation is performed with
a minimal complexity of O(n logn). Therefore, the use of this
quality metric in an unsupervised rPPG framework in which
this metric is estimated a large number of times will tend to
greatly increase the complexity of the solution. In this paper,
we propose a new probabilistic formulation of a cardiac signal
quality index, with lower complexity, based on the Bayesian
information criterion (BIC) that encapsulates the characteristic
shape of the rPPG signal. The results of this study, obtained
on a public database, have demonstrated that the proposed
probabilistic metric outperforms the regular SNR metric with
a lower computation complexity.

Index Terms—Biomedical monitoring, heart rate measure-
ments, signal quality metric.

I. INTRODUCTION

Since 2010 and pioneering work of Poh et al. [5], remote
photoplethysmography has become a very active field of
research. In recent years, several methods have been proposed
to estimate the physiological signal with fewer and fewer
environmental constraints. Thus, an expensive configuration
is no longer necessary [14], since a consumer grade webcam
can be used to make the measurements. The basic princi-
ple of remote photoplethysmography stems from reflective
photoplethysmography where the light reaching a camera is
modulated by the blood pulsations of skin. The rhythmic
beating of the heart results in the pulsating blood volume
which in turn results in minute changes in the color of the
skin which can be quantified using different signal processing
techniques to generate a cardiac signal.

The problem of rPPG measurement has been attacked from
different directions. In the initial research related to rPPG mea-
surement, the blood volume pulse (BVP) signal was usually
extracted from the RGB temporal traces using blind source
separation (BSS) such as ICA [5] or PCA [6] or more recently
PVM [17]. Another class of methods focuses on exploiting
the physical characteristics of skin tissue and its distinctive
interaction with light. Methods such as CHROM [2], POS [8]
and PBV [7] fall into this category and are based on a detailed
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the plan d’actions régional pour l’innovation (PARI) and the European Union
through the PO FEDER-FSE Bourgogne 2014/2020 programs.

formulation of models based on physiological properties of the
skin. The principal advantages of these methods lies in their
computational simplicity, owing to their analytic formulation.

As discussed in different review papers (e.g. [18], [19]),
many rPPG methods implement a general pipeline-based
framework: regions of interest (ROI) are detected and tracked
over frames, RGB channels are then combined to estimate
the pulse signal, which is filtered and analyzed to extract
physiological parameters such as heart rate or respiration rate.
This pipeline-based framework emphasizes the importance of
the common first step of ROI segmentation. Usually, ROI
segmentation is based on the result of classical face detec-
tion [5] and tracking algorithms and possibly refined with skin
pixel classification [9], [20]. As an alternative to this pipeline
approach, data-driven methods exploit the pulse-signal as a
feature to segment the ROI in an unsupervised manner using
voxels [9] or temporal superpixels [1], [3] video segmentation.
They are called unsupervised rPPG methods to emphasize the
difference with methods that require a trained classifier to
determine the ROI.

For these so-called unsupervised techniques, the quality
of the different ROIs is estimated in order to identify skin
areas [9] or to favor areas where information is predominant
[3], [12]. The signal-to-noise ratio (SNR), defined as the
ratio of the power of the main pulsatile component and the
power of background noise, is generally used for this purpose.
However, because of the video decomposition in voxels or
temporal superpixels, a large number of FFT which has a
complexity of O(n log n), has to be calculated. Moreover,
with this frequency domain index, the shape of the temporal
signal is not considered. However, in the case of rPPG signals,
the temporal form of the signal is characteristic and is an
indication of signal quality.

From these observations, we propose a probabilistic frame-
work to model the rPPG signals and derive a signal quality
metric in the temporal domain. Interestingly, the model en-
capsulates the difference in duration between the growth and
decay phases of the different stages of the cardiac cycle and
has a complexity of O(n).

The rest of the paper is organized as follows. The unsu-
pervised rPPG framework is described in section II. Then the
probabilistic rPPG signal quality metric is described in section
III. Finally, experiments and results are presented in section
IV while conclusion is presented in section V.
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Fig. 1. Flowchart of the temporal superpixel-based heart rate estimation framework: (1) Input video stream is decomposed into temporal superpixels. (2)
Tentative rPPG signal is extracted from each temporal superpixel. (3) A signal quality index is estimated for each ROI. (4) A weighted average of all the
tentative rPPG signals is finally computed.

II. UNSUPERVISED RPPG FRAMEWORK

The overview of the proposed method is shown in Fig. 1.
The algorithm can be decomposed into four main steps. First,
the input video frames are decomposed into several temporal
superpixels using the IBIS method [1]. The segmentation
step is performed by implicitly identifying the superpixel
boundaries. Hence, only a fraction of the image is used to
perform the segmentation which reduces greatly the computa-
tional burden of the process. The segmentation quality remains
comparable to state of the art methods while computational
time is significantly reduced. Second, a tentative rPPG signal
is estimated from each temporal superpixel. The term tentative
means that the estimate can also be done on background
superpixels. It is important to note here that this approach
can be used with any existing rPPG method. For the sake
of simplicity, the CHROM method [2] has been selected for
this work. Indeed, this method consists of a simple linear
combination of the RGB channels and is therefore very fast to
calculate. In our case, this computational simplicity is a very
interesting property because this operation is performed for all
temporal superpixels.

Finally, a signal quality measure, i.e. a pulsatility measure,
is estimated for each tentative pulse signal to determine
contributive signals and a weighted average of all the signals
is computed where the weights are given by the pulsatility
measure. Since the most pulsatile signals provide high quality
information, i.e. higher weight, this method implicitly selects
regions of interest that represents living skin tissue and favors
areas where the pulse trace is more predominant. This method
is employed using a sliding window and consecutive resultant
signals are then overlapped.

III. HIDDEN MARKOV MODELS FOR RPPG SIGNAL
QUALITY MEASUREMENT

A. rPPG signal modeling

In order to measure the quality of rPPG signals and the
weights in the fusion process, it is possible to estimate signal-
to-noise ratio (SNR) defined as the ratio of the power of
the main pulsatile component and the power of background
noise, computed in dB due to the wide dynamic range of the
signals. This approach has been used successfully in previous
works [3], [12]. However, the estimation of the rPPG signal
quality of all the tentative signals with a frequency-domain
measurement, imposes the computation of a large number of
FFT which has a complexity of O(n log n). Moreover, with
the SNR, the shape of the temporal signal is not considered.
However, in the case of rPPG signals, the temporal form of
the signal is characteristic and is an indication of the quality
of the information. Fig. 2 presents a cardiac pulse signal
that highlights the systole and diastole phenomena as well
as the dicrotic notch. However, it is often not possible to
observe the dicrotic notch in many remote PPG scenarios.
In this case, the measured cardiac signal has two distinctive
phases: rapid growth corresponding to systole followed by a
slow decrease corresponding to the diastole. This difference in
duration between the growth and decay phases is not captured
by signal quality metrics in the frequency domain (such as
SNR).

In this paper, we use a probabilistic framework to model
the rPPG signal and derive a signal quality metric in the
temporal domain. This approach has been used successfully
in BayesHeart [4] where hidden Markov models are used to
model temporal patterns of the different stages of the cardiac
cycle. The signal is modeled by an alternation of two states



Fig. 2. Characteristic waveform of PPG with systolic and diastolic phases
and dicrotic notches.

(growth or decay) and four possible discrete observations (see
Fig. 3). O1 represents increasing observations, O2 represents
local maximum observations, O3 represents decreasing obser-
vations and O4 represents minimum observations. A two-states
cyclic hidden Markov model with a left-to-right state transition
structure is used for the model. The hidden Markov model
can be characterized by three parameters: λ = {A,B, π}. A
represents the state transition probability distribution, B the
observation symbol probability distribution and π the initial
state distribution. The estimation of the transition and emission
parameters is performed with the Baum-Welch method on a
training dataset and the initial distribution π is determined
from the average cycle time in the training data set.

O1 O2 O3 O4

Fig. 3. Possible discrete observations.

B. Cardiac signal quality measure

The quality metric of the rPPG signal is then determined
using the Bayesian Information Criterion B [22] which pro-
vides the likelihood of the observations O given the model
parameters λ:

Bλ = −2.ln(P (O|λ)) + k.(ln(n)− ln(2π)). (1)

where n is the number of points in the signal. Fig. 4 shows the
model likelihood, as defined in (1) and a regular SNR metric
estimated on all tentative rPPG signals. Thus, it is possible to
observe that in both cases the face is correctly selected and that
the areas that contribute the most (cheekbones and forehead)
have a better score.

SNR, K=500

SNR, K=1000

BIC, K=500

BIC, K=1000

Fig. 4. Comparison of SNR (left) and BIC (right) as a cardiac signal quality
measure. Blue means low pulsatility measures and yellow/orange means high.
K is the number of temporal superpixels.

Finally, in order to determine the quality of the tentative
pulse signals, we use two two-state models. The first model is
trained on a set of rPPG signals and is denoted λs. The second
model is an equiprobable model and is denoted λn which
models a random signal. The quality index v is eventually
defined by:

v = 1− Bλs

Bλn

. (2)

We have empirically observed that it is often better to keep
only the x% best contributions. We therefore define ṽ which
represents the set of v such that:

ṽ = {v, v > max
i

(vi).
x

100
}, (3)

with i the ith temporal superpixel and maxi(vi) the most
important contribution over all temporal superpixels. Weights
are then obtained normalizing ṽi with:

wi =
ṽi∑
i∈K ṽi

, (4)

with K the number of temporal superpixels. Finally, the fusion
is carried out using the hidden states Hi(t) determined by the
Viterbi method to obtain, for each temporal superpixel, the
most probable sequence of states that led to the provided ob-
servations. This method acts as a filtering and helps to mitigate
disturbances. The final pulse signal S(t) is constructed with
the weighted average of the state sequences of the different
temporal superpixels weighted by the weights wi:

S(t) =
∑
i∈K

wiHi(t). (5)



IV. EXPERIMENTS AND RESULTS

The in-house UBFC-RPPG database [12] is used to evaluate
the proposed cardiac signal quality metric in the unsupervised
rPPG framework. The REALISTIC subset of this database,
used in this work, comprises of 46 videos where the subjects
were required to play a time sensitive mathematical game
in order to vary the heart rate and simultaneously emulate
the scenario of the typical activity of using a computer.
All the videos were taken under ambient light with limited
illumination variations. The experimental setup with sample
images is depicted in Fig. 5. The UBFC-RPPG database is
made publicly available along with the ground truth data from
the pulse oximeter for rPPG measurement analysis1.

The video frames were obtained with a custom C++ ap-
plication using a Logitech C920 web camera placed at about
1m from the subject with a resolution of 640x480 in 8-bit
uncompressed RGB format at approximately 30 frames per
second. A CMS50E transmissive pulse oximeter was used to
obtain the ground truth PPG data.

Fig. 5. Experimental Setup (top) and sample images from the UBFC-RPPG
database (bottom).

The estimation of the model parameters is performed with
the Baum-Welch method [21] on the SIMPLE subset of the
UBFC-RPPG dataset. This subset is composed of 7 simple
videos in which the volunteers were asked to sit still. The
transition matrix A and the emission matrix B are initialized
with:

A =

(
0.8 0.2
0.2 0.8

)
,

B =

(
0.6 0.1 0.3 0.1
0.3 0.1 0.6 0.1

)
.

(6)

1https://sites.google.com/view/ybenezeth/ubfcrppg

Thus, the probability of transition from one state to the
other is set to 20% while the probability of observation of the
symbols are function of the shape of the signal. Since the most
represented symbols with a rPPG signal are growth and decay,
the emission probabilities are set to 60% for the observation
of a growth in state 1 (i.e. growth) and 30% for a continuous
decay in the state 1. These probabilities are reversed in state
2 (i.e. decay). The probabilities of observing a concave or
convex curve variation are necessarily lower and are thus sett
to 10%.

We give below the matrices obtained after the training:

A =

(
0.8694 0.1306
0.1298 0.8702

)
,

B =

(
0.9192 0.0808 ∼ 0 ∼ 0
∼ 0 0.0480 0.8176 0.1345

)
.

(7)

Table I shows the heart rate estimation accuracy comparison
between the proposed signal quality metric based on the
probabilistic framework and the regular SNR metric for the
fusion process. The evaluation metrics used are Mean Absolute
Error (MAE), Root Mean Square Error (RMSE), Pearsons
correlation coefficient (r) and Precision between heart rate
calculated using the rPPG signal and the heart rate calculated
using the ground truth PPG waveform. The Precision metric
represents the percentage of estimations where the absolute
error is under a threshold (2.5 or 5 bpm).

TABLE I
RESULTS FOR HEART RATE ESTIMATION WITH THE PROPOSED BIC

SIGNAL QUALITY METRIC COMPARED TO THE REGULAR SNR METRIC.

Metrics SNR BIC
Precision 5 bpm 0.940 0.975
Precision 2.5bpm 0.899 0.951
RMSE 4.00 2.41
MAE 2.05 1.21
r 0.83 0.82

In order to obtain these results, the CHROM method [2]
was selected for its simplicity, we use a resolution of 150
temporal superpixels and x = 5%. Values in bold indicate
the best result for each metric. It can first be noted that the
average error MAE and the squared error RMSE are both
lower with BIC. That means that the number of errors is lower
and that the wrong esimates have values which are closer from
the ground truth with BIC. However, the results are very close,
and the heart rate estimation is very good in both cases using
this dataset.

Fig. 6 shows the robustness to motion of the two signal
quality indices. The background is generally very efficiently
eliminated by the SNR metric and the difference between the
weights is larger. However, the movements and deformation of
superpixels tend to bring out false signal information induced
by the variations of superpixel boundaries. On the contrary,
BIC quality metric can be more resilient to these disturbances.



SNR BIC

Fig. 6. Example of results obtained with SNR (left) and BIC (right).

V. CONCLUSION

In the present study, we have described and evaluated a
new cardiac signal metric in an unsupervised rPPG framework
in which the regions of interest segmentation is performed
by implicitly selecting living skin tissue via their distinct
pulsatility feature. Photoplethysmogram signals are estimated
with the weighted fusion of several tentative rPPG signals
computed on a set of temporal superpixels. The cardiac signal
quality metric is based on a probabilistic framework where the
characteristic shape of the temporal signal is considered in the
hidden Markov model. It has been shown that the fusion of
several rPPG signals estimated on several regions of interest
generally improves the quality of the resulting cardiac signal
(e.g. [12]). However, this approach can be very intensive in
calculations because the operations performed on each area are
repeated several times. Therefore, it is interesting to note that
the complexity of the proposed metric is O(n) whereas the
complexity of the FFT (necessary for the SNR) is O(n log n).

Based on a publicly available dataset of 46 videos, the
results of this study have demonstrated that the probabilistic
metric outperforms the regular SNR metric with a lower
computation complexity.

With regard to future developments, it would be interesting
to quantify the saving of computing time more precisely
and to study the possibility of using a four-states model by
considering the dicrotic notch for scenarios where the signal
is of good quality (for example in controlled environments
with professional cameras). Next, we also plan to examine the
use of this measure to analyze other biomedical signals.
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