Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Deep learning approach for artefacts correction on photographic films

David Strubel 1, 2 Blanchon Marc 2 David Fofi 2
2 VIBOT - Equipe VIBOT - VIsion pour la roBOTique [ImViA EA7535 - ERL CNRS 6000]
CNRS - Centre National de la Recherche Scientifique : ERL 6000, ImViA - Imagerie et Vision Artificielle [Dijon]
Abstract : The use of photographic films is not totally obsolete, photographers continue to use this technology for quality in terms of aesthetic rendering. A crucial step with films is the digitization step. During the scanning process, dust, scratch and hair (artefacts) are a real problem and greatly affect the quality of final images. The artefacts correction has become a challenge in order to preserve the quality of these photos. In this article, we present a new method based on deep learning with an encoder-decoder architecture to detect and eliminate artefacts. In addition, a dataset has been created to carry out the experiments.
Liste complète des métadonnées

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-02369128
Contributeur : Imvia - Université de Bourgogne <>
Soumis le : lundi 18 novembre 2019 - 17:54:24
Dernière modification le : mercredi 22 janvier 2020 - 15:44:03

Identifiants

Collections

Citation

David Strubel, Blanchon Marc, David Fofi. Deep learning approach for artefacts correction on photographic films. Fourteenth International Conference on Quality Control by Artificial Vision, May 2019, Mulhouse, France. pp.35, ⟨10.1117/12.2521421⟩. ⟨hal-02369128⟩

Partager

Métriques

Consultations de la notice

88