Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Five Ways in Which Computational Modeling Can Help Advance Cognitive Science: Lessons From Artificial Grammar Learning

Abstract : There is a rich tradition of building computational models in cognitive science, but modeling, theoretical, and experimental research are not as tightly integrated as they could be. In this paper, we show that computational techniques-even simple ones that are straightforward to use-can greatly facilitate designing, implementing, and analyzing experiments, and generally help lift research to a new level. We focus on the domain of artificial grammar learning, and we give five concrete examples in this domain for (a) formalizing and clarifying theories, (b) generating stimuli, (c) visualization, (d) model selection, and (e) exploring the hypothesis space.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-02382688
Contributeur : Lead - Université de Bourgogne <>
Soumis le : mercredi 27 novembre 2019 - 11:55:20
Dernière modification le : jeudi 18 juin 2020 - 12:32:06

Lien texte intégral

Identifiants

Collections

Citation

Willem Zuidema, Robert French, Raquel Alhama, Kevin Ellis, Timothy O'Donnell, et al.. Five Ways in Which Computational Modeling Can Help Advance Cognitive Science: Lessons From Artificial Grammar Learning. Topics in cognitive science, Wiley, 2019, pp.1-17. ⟨10.1111/tops.12474⟩. ⟨hal-02382688⟩

Partager

Métriques

Consultations de la notice

77