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DARBOUX SYSTEMS WITH A CUSP POINT AND

PSEUDO-ABELIAN INTEGRALS

Aymen Braghtha

Abstract. We study pseudo-abelian integrals associated with polyno-
mial deformations of Darboux systems having a cuspidal singularity.
Under some genericity hypothesis we provide locally uniform bounded-
ness of on the number of their zeros.

Mathematics Subject Classification (2010). 34C07, 34C08.
Key words : Pseudo-abelian integrals, First integral, Limit cycles, Dar-

boux integrability.

1. Introduction and main result

The second part of Hilbert’s 16th problem, asking for the maximum of the
numbers of limit cycles and their relative positions for all planar polynomial
differential systems of degree n. A weak version of this problem, proposed by
Arnold, asking for the maximum of the numbers of isolated zeros of abelian
integrals of all polynomial one-forms ω of degree n over algebraic ovals γ(t) ∈
H1(P−1(t)), where P ∈ C[x, y] of degree m. In [10, 8], Varchenko and
Khovanskii prove the following result

Theorem 1.1. There exist a uniform bound, depending only n and m, for
the number of real zeros of abelian integrals.

Varchenko and Khovanskii showed the existence of a uniform local bound
on the number of zeros of abelian integrals when deforming the polynomial
P and the polynomial form ω in their respective spaces. Next, the result is
obtained using the fact that the space of parameters can be considered as
being compact.

General explicit double exponential upper bound was achieved only in [2]
by completely different methods. Exact upper bounds are still absent.

Arnold posed with insistence the analogous problem for more general
polynomial deformations of integrable systems, in particular for deforma-
tions of system having a Darboux first integral. Then, instead of abelian
integrals, one encouters pseudo-abelian integrals.

Pseudo-abelian integrals are integrals I(t) =
∫
γ(t)

η
M of rational one-forms

along cycles γ(t) ⊂ {H = t}, where

H =
k∏
i=1

P aii , M =
k∏
i=1

Pi, ai ∈ R∗
+, Pi ∈ R[x, y],
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and M is an integrating factor. These integrals appear as principal part of
the Poincaré displacement function of the deformation θ + εη along γ(t),
where

θ = M
dH

H
, η = Rdx+ Sdy, R, S ∈ R[x, y].

In [3, 9], Bobieński, Mardešić and Novikov prove the following result

Theorem 1.2. Let H,M, η be as above. Under some genericity hypothesis,
there exists a uniform bound for number of zeros of pseudo-abelian integrals
associated to Darboux integrable systems close to θ.

Here we prove an analogous result in one of non-generic cases. Another
non-generic cases was studied in [1], [4] and [5].

Consider Darboux integrable system ω0 = M dH
H , M is an integrating

factor, where
(1.1)

H = P a0

k∏
i=1

P aii , M = P0

k∏
i=1

Pi, P0 = y2− x3, Pi ∈ R[x, y], a, ai > 0,

where Pi(0, 0) 6= 0 for i = 1, . . . , k.
Let ωε = Mε

dHε
Hε

be an unfolding of the form ω0, where ωε are one-forms
with the Darboux first integral

(1.2) Hε = P aε

k∏
i=1

P aii , Mε = Pε

k∏
i=1

Pi, Pε(x, y) = y2 − x3 − εx2.

Assume that the system ωε = Mε
dHε
Hε

= 0 has a family {γε(h) ⊂ H−1
ε (h)} of

cycles. Consider the polynomial deformation of the system ωε.

(1.3) θε,ε1 = ωε + ε1η, ε1 > 0, η = Rdx+ Sdy, R, S ∈ R[x, y].

The linear part in deformation parameter ε1 of Poincaré first return map is
given by the pseudo-abelian integrals

(1.4) Iε(h) =

∫
γε(h)

η

Mε
.

Assume that the levels curves Pε = 0 and Pi = 0 intersect transversally
and all level curves Pi = 0, i = 1, . . . , k are smooth and together with the line
at infinity intersect two by two transversally and no three of them intersect
in the same point.

The Darboux first integral Hε has two critical points, one near the critical
point pε = (−2ε

3 , 0) of P0, which will be denoted pe and is a center, and a
saddle point p = (0, 0) for ε 6= 0, coincide with the cusp point p0 = (0, 0) for
ε = 0. Then, for ε 6= 0, two singular points pε and p bifurcate from p0.

For ε 6= 0, we choose a compact region D which is bounded by Pε = 0
and some separatrices Pi = 0, i = 1 · · · , k such that the center pε is outside
of D. Assume that the cycles γε(h) ⊂ H−1

ε (h) filling D, see Figure 1.
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Figure 1. The real phase portrait of Hε for ε 6= 0.

Theorem 1.3. Let Iε(h) be the family of pseudo-abelian integrals as defined
above. Then there exists an upper bound for the number of isolated zeros of
the pseudo-abelian integrals Iε(h), for h ∈ (0, h0). The bound is locally uni-
form with respect to all parameters, i.e. the parameters of η, the coefficients
of the polynomials Pi, the exponents a, ai and the parameter ε.

The Darboux systems ωε = Mε
dHε
Hε

have a family of cycles in the basin of

the center pε bifurcating from p0 = (0, 0). To give a ε-uniform estimate for
the number of zeros of the pseudo-abelian integrals we make the blowing-up
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of the cusp point of the family in the product space (x, y, ε) of phase and
parameter spaces. The family blowing-ups were introduced by Denkowska
and Roussarie in [6].

2. Blowing-up the cusp point

Let C3 be equipped with system of coordinates (x, y, ε). Denote F the
one-dimensional foliation on C3 which is given by the 2-form ωε ∧ dε, ωε ∈
Ω1(C3). This foliation has a cuspidal singularity at the origin. We want
our blow-up to simplify this singularity. This requirements leads to the
quasi-homogeneous blow-up with weights (2, 3, 2).

Recall the construction of the quasi-homogeneous blow-up. We define the
corresponding action A of C∗ on C3 \{0} by r.(x, y, z) = (r2x, r3y, r2z). We
use this action to define weighted projective space CP2

2:3:2 as the quotient
C3 \ {0}/A. The quasi-homogeneous blow-up of C3 at the origin is defined
as the incidence three dimensional manifold. The precise definition is the
following. Let q = (x, y, ε) ∈ C3, [(X,Y,E)] ∈ CP2

2:3:2. Then W = {(p, q) ∈
CP2

2:3:2 × C3 : ∃r ∈ C : (x, y, ε) = (r2X, r3Y, r2E)} which means that the
point q belongs to the closure of the equivalence class defined by p ∈ CP2

2:3:2.
The projective space CP2

2:3:2 is covered by three affine charts: W1 = {x 6= 0}
with coordinates (Y1, E1), W2 = {y 6= 0} with coordinates (X2, E2) and
W3 = {ε 6= 0} with coordinates (X3, Y3).

The space CP2
2:3:2 is an orbifold. More to the point, the affine chart

Ψ2 : W2 → CP2
2:3:2 is three-to-one: we have Ψ2(X2, E2) = Ψ2(r2X2, r

2E2) =

Ψ2(rX2, rE2) for r = e
2
3
πi, so Ψ2 branches at the point (0, 0). The affine

chart Ψ1 : W1 → CP2
2:3:2 is two-to-one, as Ψ1(Y1, E1) = Ψ1(−Y1, E1), and

the same holds for Ψ3 : W3 → CP2
2:3:2. In particular, they have branch at

lines Y1 = 0 and Y3 = 0 correspondingly. The branching means that while
the blow-up σ : W → C3 is biholomorphism away from σ−1(0), an attempt
to lift F to above charts on W will be complicated.

For future applications we will need explicit formula for the blow-up in
the standard affine charts of W .

These affine charts define affine charts onW , with coordinates (Y1, E1, r1),
(X2, E2, r2) and (X3, Y3, r3). The blow-up σ is written as

σ1 : x = r2
1, y = r3

1Y1, ε = r2
1E1(2.1)

σ2 : x = r2
2X2, y = r3

2, ε = r2
2E2(2.2)

σ3 : x = r2
3X3, y = r3

3Y3, ε = r2
3.(2.3)

We apply this blow-up σ to the one-dimensional foliation F on C3 given
by the intersection of dε = 0 and ωε = 0. This foliation has a cuspidal
singularity at the origin. Denote by σ−1F the lifting of the foliation F to
the complement of the exceptional divisor σ−1(0). This foliation is regular
outside of the preimage of {Pε = 0, ε = 0}.
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Proposition 2.1. The foliation σ−1F can be extended analytically to the
exceptional divisor σ−1(0). The resulting foliation σ∗F is regular outside of
the strict transform of {Pε = 0, ε = 0}.

Proposition 2.2. The singularities of the resulting foliation σ∗F on σ−1(0)
are located at the points p1 = (0, 1, 0), p2 = (0,−1, 0), p3 = (0, 0,−3

2) and

pc = (−2
3 , 0, 0).

Proof. The quasi-homogeneous blow-up σ : W → C3 is a biholomorphism
outside the exceptional divisor σ−1(0), all singularties of the foliation σ∗F
outside σ−1(0) correspond to singularities of F .

Let σ∗1F be the restriction of σ∗F to the chart W1. On the exceptional
divisor, the foliation σ∗1F has a first integral F1 = E−3(Y 2 − E − 1) = t.
The corresponding logarithmic form is given by

E(Y 2 − E − 1)
dF1

F1
=− 3(Y 2 − E − 1)dE + Ed(Y 2 − E)

= (−3Y 2 + 2E + 3)dE + 2EY dY,

and the singular points of the foliation are (r = 0, Y = ±1, E = 0) and
(0, 0,−3

2). Note that the first two correspond to the same point on CP2
2:3:2.

The second one corresponds to pc = (−2
3 , 0, 0) in the chart W3 (see Figure

2).
ptional divisor are the line of centers (X3 = −2

3 , Y3 = 0). �

Remark 2.3. Strictly speaking, the point p1 is not a saddle of σ∗F as it
is not an isolated singularity: on each leaf {ε = Const} there is a saddle
converging to p1, so the lifting σ∗F has a whole line of singular points (0, 0, r)
transversal to σ−1(0) and intersecting it at p1. However, each point (0, 0, r)
is a saddle on its leaf {ε = Const}.

3. Proof of Theorem 1.3

In this section we first take benefit from the blowing-up in the family
performed in the previous section to prove Theorem 1.3.

Let F be the one-dimensional foliation on C3 introduced in the previous
section and singF = {p4, . . . , pk} be the set of its saddles points.

3.1. Polycycles. Let t := ε3

h and G := (σ∗ε)3

σ∗H(ε,x,y) . The phase portait of the

resulting foliation σ∗1F on exceptional divisor is given by the levels curves
{G = t}. After the making of the blowing-up we obtain, on each leaf {ε =
Const}, a hyperbolic polycycle (i.e. each intersection of consecutive edges
we have a saddle point)

(3.1) δ =


δ0 ∪ δ4 ∪ . . . ∪ δk,

δ1 ∪ δ2 ∪ δ4 ∪ . . . ∪ δk,
δ3 ∪ δ4 ∪ . . . ∪ δk,
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Figure 2. The levels curves {G = t}.

where δ3 ⊂ {G = t}R and {. . .}R denotes the real part of a complex analytic
set, see Figure 3.

Let singσ∗F = {p1, . . . , pk} be the set of singular points of the resulting
foliation σ∗F . Let us fix a polycycle δ of family (3.1) and denote δ(ε, h) its
corresponding cycle, see Figure 3. We define

(3.2) J(ε, h) =

∫
δ(ε,h)

σ∗
η

Mε
.

3.2. Variation relations. Define the variation operator V ar as the differ-
ence between counterclockwise and clockwise continuation of F

V ar(h,β)F (h) = F (heiβπ)− F (he−iβπ).

The integral J admits analytic continuation to a universal cover of a
product D0,ε × D0,h of two small punctured discs.

Proposition 3.1. The integral J(ε, h) satisfies the following iterated vari-
ations equation

(3.3) V ar(h,α1) ◦ · · · ◦ V ar(h,αk+1)J(ε, h) = 0, αi ∈ R[a, a1, . . . , ak].
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Figure 3. Real phase portrait of the foliation σ∗F .

Proof. The globally multivalued Darboux first integral is in fact analytic
in the neighborhood of the origin, so the results of [3] are applicable. Con-
cretely, let us fix a leaf {ε = Const} and some hyperbolic polycycle δ =

∐
i δi

of family (3.1). Using a partition of unity multiplying the form σ∗ η
Mε

we
can consider semilocal problem with a relative cycle close to one separatrix
of the polycycle. Precisely, let δi be a some separatrix (connecting sad-
dles pj and pk) of the polycycle δ with exponent αi and two saddles points
pj = δi ∩ δj , pk = δi ∩ δk, where δj , δk two separatrices of δ with exponents
αj and αk, respectively. Let δi(ε, h) be its corresponding relative cycle. The
respective iterated variations of the relative cycle δi(ε, h) is a closed loop
which is either the commutator loop if αj 6= αk or the figure eight loop if
αj = αk.

Finally, using the commutativity of the variation operator V ar and the
univaluedness of the blown-up form σ∗1

η
Mε

, we obtain

V ar(h,α1) ◦ · · · ◦ V ar(h,αk+1)J(ε, h) = 0.

�
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Proposition 3.2. The variation of the integral J with respect to ε is an
integral of the blown-up form σ∗ η

Mε
along the figure eight cycle

(3.4) V ar(ε,1)J(ε, h) =

∫
eight figure

σ∗
η

Mε

Proof. In the chart W1, let (Y,E, r) be a suitable coordinate system near
the edge δ0 (Figure 3) such that the blown-up foliation σ∗1F is given by two
first integrals ε = r2E and h = r6(Y − 1)(Y + 1). Near p1 (respectively
p2), let fix a transversal Σ1 = {r = 1} (resp Σ2 = {r = 1}) to the edge
{E = Y − 1 = 0} (respectively {E = Y + 1 = 0}), and introduce a new
local coordinate Z = (Y + 1)(Y − 1) , so E,Z are local coordinates. The
restriction of the foliation σ∗1F on Σ1 (respectively Σ2) is given by two
first integrals ε = E, h = Z. Let (Z1, E1) = (h, ε) = δ(ε, h) ∩ Σ1 be the
starting point and (Z2, E2) = (h, ε) = δ(ε, h) ∩ Σ2 be the end point, see
Figure 3. So, as ε makes a full turn around ε = 0 in the (ε, h)-space with
h fixed, each point (Zi, Ei)i=1,2 makes a full turn around E = 0 in Σi with
Z remains fixed, geometrically means that a eight figure produced near
the edge δ0 e.g V ar(ε,1)δ(ε, h) = eight figure. On the other hand, for a
finite distance to the exceptional divisor {r1 = 0} and near a each edge
δi, i = 4, . . . , k, the foliation σ∗1F is analytic in variable E1 and consequently
we have V ar(ε,1)δ(ε, h) = 0. Using the partition of unity, conclude that have

V ar(ε,1)J(ε, h) = V ar(ε,1)

∫
δ(ε,h)

σ∗1
η

Mε
= V ar(ε,1)

∑
j

∫
δj(ε,h)

σ∗1
η

Mε

=
∑
j

V ar(ε,1)

∫
δj(ε,h)

σ∗1
η

Mε
=

∫
eight loop

σ∗1
η

Mε
.

�

3.3. Proof of Theorem 1.3. The integral J(ε, h) can be viewed as the
pull-back of the pseudo-abelian integrals Iε(h) := I(ε, h) by the blowing-up
map σ. The proof of Theorem 1.3 is now reduced to the proof of

Theorem 3.3. The number #{h ∈ (0, h0) : J(ε, h) = 0} is uniformly
bounded in ε.

Proof. Let µ > 0 be sufficiently small and αi ∈ {α1, . . . , αk+1}. In or-
der to apply the argument principle to J(ε, h), we define Γi a simply con-
nected region with boundary ∂Γi = CαiR ∪ Cαiµ ∪ C

αi
± where CαiR = {|h| =

R, | arg(h)| ≤ αiπ} (big arc), Cαiµ = {|h| = µ, | arg(h)| ≤ αiπ} (small arc)

and Cαi± = {µ < |h| < R, | arg(h)| = ±αiπ} (segments).
The argument principle says that:

#{h ∈ Γi : J(ε, h) = 0} ≤ 1

2π
∆ arg∂Γi J(ε, h) =

1

2π
∆ argCαiR

J(ε, h)

+
1

2π
∆ argCαi±

J(ε, h) +
1

2π
∆ argCαiµ J(ε, h),
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where the circular arcs and the segments are taken with a suitable parame-
terization.

(1) The estimation of the increment of argument ∆ argCαiR
J(ε, h) of

J(ε, h) along CαiR is again due to Gabrielov’s theorem [7].
(2) The estimation of the increment of argument ∆ argCαi±

J(ε, h) of

J(ε, h) along segments Cαi+ and Cαi− reduces to estimating zeros of
V ar(h,αi)J(ε, h) which is again a pseudo-abelian integral over differ-
ent cycle, but now satisfying iterated variation equation of smaller
lenght. As in [3, 9], by induction on this lenght, it has uniformly
bounded number of zeros.

(3) As a consequence of equation (3.3) the function admits, near h = 0,
the following asymptotic expansion

(3.5) J(ε, h) =
k+1∑
i=1

k∑
j=0

φi(ε)h
αi logj h.

Existence of this asymptotic expansion implies that for sufficiently
small µ the increment ∆ argCαiµ J(ε, h) is at most 2αiM(ε) + 1, i.e.

is bounded by the rate of growth of J(ε, h) as h→ 0. The latter can
be easily bounded from above, uniformly in ε, as in [3, 9].

All the above constructions depend analytically on parameters like
coefficients of the polynomials Pi, exponents a, ai and coefficients of
the form η.

�
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Université de Bourgogne, Institut de Mathématiques de Bourgogne,
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