Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Tubular neighborhoods of orbits of power-logarithmic germs

Abstract : We consider a class of power-logarithmic germs. We call them parabolic Dulac germs, as they appear as Dulac germs (first-return germs) of hyperbolic polycycles. In view of formal or analytic characterization of such a germ f by fractal properties of several of its orbits, we study the tubular \(\varepsilon \)-neighborhoods of orbits of f with initial points \(x_0\). We denote by \(A_f(x_0,\varepsilon )\) the length of such a tubular \(\varepsilon \)-neighborhood. We show that, even if f is an analytic germ, the function \(\varepsilon \mapsto A_f(x_0,\varepsilon )\) does not have a full asymptotic expansion in \(\varepsilon \) in the scale of powers and (iterated) logarithms. Hence, this partial asymptotic expansion cannot contain necessary information for analytic classification. In order to overcome this problem, we introduce a new notion: the continuous time length of the\(\varepsilon \)-neighborhood\(A^c_f(x_0,\varepsilon )\). We show that this function has a full transasymptotic expansion in \(\varepsilon \) in the power, iterated logarithm scale. Moreover, its asymptotic expansion extends the initial, existing part of the asymptotic expansion of the classical length \(\varepsilon \mapsto A_f(x_0,\varepsilon )\). Finally, we prove that this initial part of the asymptotic expansion determines the class of formal conjugacy of the Dulac germ f.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-02384780
Contributeur : Imb - Université de Bourgogne <>
Soumis le : jeudi 28 novembre 2019 - 15:07:08
Dernière modification le : vendredi 29 novembre 2019 - 02:30:55

Identifiants

Collections

Citation

Pavao Mardešić, M. Resman, Jean-Philippe Rolin, V. Županović. Tubular neighborhoods of orbits of power-logarithmic germs. Journal of Dynamics and Differential Equations, Springer Verlag, 2019, pp.1-49. ⟨10.1007/s10884-019-09812-8⟩. ⟨hal-02384780⟩

Partager

Métriques

Consultations de la notice

55