, World Health Organization et al. Global strategy for dengue prevention and control, 2012.

R. M. Roy-m-anderson, B. May, and . Anderson, Infectious diseases of humans: dynamics and control, vol.28, 1992.

L. Esteva and C. Vargas, Analysis of a dengue disease transmission model, Mathematical biosciences, vol.150, issue.2, pp.131-151, 1998.

S. Tavares-rubim-de-pinho, C. P. Ferreira, L. Esteva, F. Barreto, M. Morato-e-silva et al., Modelling the dynamics of dengue real epidemics, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.368, pp.5679-5693, 1933.

E. Dana-a-focks, D. G. Daniels, J. E. Haile, and . Keesling, A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation, and samples of simulation results. The American journal of tropical medicine and hygiene, vol.53, pp.489-506, 1995.

P. Waikhom, R. Jain, and S. Tegar, Sensitivity and stability analysis of a delayed stochastic epidemic model with temperature gradients. Modeling Earth Systems and Environment, vol.2, p.49, 2016.

J. Liu-helmersson, H. Stenlund, A. Wilder-smith, and J. Rocklöv, Vectorial capacity of aedes aegypti: effects of temperature and implications for global dengue epidemic potential, PloS one, vol.9, issue.3, p.89783, 2014.

S. Polwiang, The seasonal reproduction number of dengue fever: impacts of climate on transmission, PeerJ, vol.3, p.1069, 2015.

W. Wang and G. Mulone, Threshold of disease transmission in a patch environment, Journal of Mathematical Analysis and Applications, vol.285, issue.1, pp.321-335, 2003.

P. Auger, E. Kouokam, G. Sallet, M. Tchuente, and B. Tsanou, The ross-macdonald model in a patchy environment, Mathematical biosciences, vol.216, issue.2, pp.123-131, 2008.

M. Nekovee, Y. Moreno, G. Bianconi, and M. Marsili, Theory of rumour spreading in complex social networks, Physica A: Statistical Mechanics and its Applications, vol.374, issue.1, pp.457-470, 2007.

R. Albert and A. Barabási, Statistical mechanics of complex networks. Reviews of modern physics, vol.74, p.47, 2002.

R. Pastor-satorras, C. Castellano, P. Van-mieghem, and A. Vespignani, Epidemic processes in complex networks, Reviews of modern physics, vol.87, issue.3, p.925, 2015.

A. Vespignani, Modelling dynamical processes in complex socio-technical systems, Nature physics, vol.8, issue.1, p.32, 2012.

Y. Moreno, R. Pastor-satorras, and A. Vespignani, Epidemic outbreaks in complex heterogeneous networks, The European Physical Journal B-Condensed Matter and Complex Systems, vol.26, issue.4, pp.521-529, 2002.

X. Li and X. Wang, Controlling the spreading in small-world evolving networks: stability, oscillation, and topology, IEEE Transactions on Automatic Control, vol.51, issue.3, pp.534-540, 2006.

K. Orman, V. Labatut, and H. Cherifi, An empirical study of the relation between community structure and transitivity, Complex Networks. Studies in Computational Intelligence, vol.424, pp.99-110, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00717707

N. Gupta, A. Singh, and H. Cherifi, Centrality measures for networks with community structure, Physica A: Statistical Mechanics and its Applications, vol.452, pp.46-59, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01433044

Z. Ghalmane, M. E. Hassouni, C. Cherifi, and H. Cherifi, Centrality in modular networks, EPJ Data Science, vol.8, issue.15, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02376593