Spontaneous emission and energy shifts of a Rydberg rubidium atom close to an optical nanofiber - Université de Bourgogne Accéder directement au contenu
Article Dans Une Revue Physical Review A : Atomic, molecular, and optical physics [1990-2015] Année : 2020

Spontaneous emission and energy shifts of a Rydberg rubidium atom close to an optical nanofiber

Résumé

In this paper, we report on numerical calculations of the spontaneous emission rates and Lamb shifts of a $^{87}\text{Rb}$ atom in a Rydberg-excited state $\left(n\leq30\right)$ located close to a silica optical nanofiber. We investigate how these quantities depend on the fiber's radius, the distance of the atom to the fiber, the direction of the atomic angular momentum polarization as well as the different atomic quantum numbers. We also study the contribution of quadrupolar transitions, which may be substantial for highly polarizable Rydberg states. Our calculations are performed in the macroscopic quantum electrodynamics formalism, based on the dyadic Green's function method. This allows us to take dispersive and absorptive characteristics of silica into account; this is of major importance since Rydberg atoms emit along many different transitions whose frequencies cover a wide range of the electromagnetic spectrum. Our work is an important initial step towards building a Rydberg atom-nanofiber interface for quantum optics and quantum information purposes.
Fichier principal
Vignette du fichier
PhysRevA.101.052508.pdf (1.79 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02481944 , version 1 (18-05-2020)

Identifiants

Citer

E. Stourm, M. Lepers, J. Robert, S. Nic Chormaic, K. Mølmer, et al.. Spontaneous emission and energy shifts of a Rydberg rubidium atom close to an optical nanofiber. Physical Review A : Atomic, molecular, and optical physics [1990-2015], 2020, 101 (5), pp.052508. ⟨10.1103/PhysRevA.101.052508⟩. ⟨hal-02481944⟩
215 Consultations
78 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More