Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Intrinsic RGB and multispectral images recovery by independent quadratic programming

Abstract : This work introduces a method to estimate reflectance, shading, and specularity from a single image. Reflectance, shading, and specularity are intrinsic images derived from the dichromatic model. Estimation of these intrinsic images has many applications in computer vision such as shape recovery, specularity removal, segmentation, or classification. The proposed method allows for recovering the dichromatic model parameters thanks to two independent quadratic programming steps. Compared to the state of the art in this domain, our approach has the advantage to address a complex inverse problem into two parallelizable optimization steps that are easy to solve and do not require learning. The proposed method is an extension of a previous algorithm that is rewritten to be numerically more stable, has better quantitative and qualitative results, and applies to multispectral images. The proposed method is assessed qualitatively and quantitatively on standard RGB and multispectral datasets.
Liste complète des métadonnées

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-02487531
Contributeur : Imvia - Université de Bourgogne <>
Soumis le : vendredi 21 février 2020 - 16:37:45
Dernière modification le : mercredi 26 février 2020 - 01:51:22

Lien texte intégral

Identifiants

Collections

Citation

Alexandre Krebs, Yannick Benezeth, Franck Marzani. Intrinsic RGB and multispectral images recovery by independent quadratic programming. PeerJ Computer Science, PeerJ, 2020, 6, pp.e256. ⟨10.7717/peerj-cs.256⟩. ⟨hal-02487531⟩

Partager

Métriques

Consultations de la notice

94