
Run-time Environment for the SARL
Agent-Programming Language: the Example of the

Janus platform

Stéphane GALLANDa, Sebastian RODRIGUEZb, Nicolas GAUDa

aLE2I, Univ. Bourgogne Franche-Comté, UTBM, F-90010 Belfort, France
bGITIA, Universidad Tecnológica Nacional, San Miguel de Tucumán, CPA T4001JJD,

Agentina

Abstract

SARL is a general-purpose agent-oriented programming language. This lan-
guage aims at providing the fundamental abstractions for dealing with concur-
rency, distribution, interaction, decentralization, reactivity, autonomy and dy-
namic reconfiguration that are usually considered as essential for implementing
agent-based applications. Every programming language specifies an execution
model. For SARL, this run-time model is supported by a SARL run-time envi-
ronment. The goals of this paper are to highlight the key principles for creating
a SARL run-time environment, and its concrete implementation into the Janus
agent platform.

Keywords: SARL agent-programming language, Run-time Environment,
Janus platform

1. Introduction

In past years, multi-agent systems (MAS) have taken their place in our so-
ciety. Application fields include robotics, artificial intelligence, cinema, video
games. This evolution is the answer to increasingly complex projects, which
require “intelligent” systems. Multi-agent systems allow to implement solu-
tions with intelligence, capable of reasoning, learning and interacting between
different agents. These systems represent a totally different way of looking at
things. This way of designing systems resulted in new tools, methodologies and
architectures, better suited to MAS modeling, e.g. ASPECS [1], MaSE [2] or
even Gaia [3]. These methodologies are complemented by agent platforms for
supporting the run-time execution of the designed models. There are several
dozens, e.g. Jade [4], NetLogo [5], GAMA [6], or Janus [7].

∗Corresponding author
Email address: stephane.galland@utbm.fr (Stéphane GALLAND)

Preprint submitted to Journal of Future Generation Computer Systems October 10, 2017

© 2017 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0167739X17313419
Manuscript_af108fdc0a0bceb697153738b868d0ed

https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0167739X17313419

On one hand, these solutions are highly interesting because they frame and
provide tools for the development of agent-based systems. On the other hand,
these systems are very complex to implement, and the conventional program-
ming languages (Java, etc.) are not suited. There is therefore a real need for
programming languages dedicated to MAS, which would offer more clarity to
developers, and simplify developments. Several agent-programming languages
have been proposed. Most of them are domain-specific languages, e.g. GAML
[6], MARS [8], or Jason [9]. Several of these languages are general-purpose,
e.g. SARL [10]. SARL [10] is a new general-purpose agent-oriented program-
ming language (APL). SARL tries to set up adaptive and modular principles
for developing multi-agent systems.

Every programming language specifies an execution model, and many im-
plement at least part of that model in a runtime system [11]. For a SARL
program being executed, a specific run-time environment must be defined. The
goals of this paper are to highlight: (i) the key principles for creating a SARL
run-time environment, and (ii) its concrete implementation within the Janus
agent platform [7]. Neither the relationship between the above methodologies
and SARL, nor the one between these methodologies and Janus are the purpose
of this paper. Our motivations are:

i) to enable Researchers, Engineers and Students to create a run-time envi-
ronment for SARL. The key principles and features to be considered for
designing this run-time environment are provided to them; and

ii) to give a proof of concept based on the Janus platform. This platform al-
ready provides an implementation for holonic multi-agent systems, which
are also a core concept within SARL. In this paper, the Janus meta-model
and software architecture are updated in order to fit the SARL require-
ments.

This paper is structured as follow. Section 2 explains the fundamentals of the
SARL language. Section 3 presents the compilation and execution tool-chain
for SARL. Section 4 details the key principles for creating a SARL run-time
environment that handles any SARL program. Several existing agent platforms
are presented in Section 5. Section 6 gives details on the re-implementation of
the Janus platform in order to create a SARL run-time environment. Section
7 describes the performance evaluation of the Janus implementation. Finally,
Section 8 concludes this paper and provides perspectives to this work.

2. SARL Agent-Programming Language

SARL1 is a general-purpose agent-oriented programming language [10]. It
aims at providing the fundamental abstractions for dealing with standard agent

1Official website: http://www.sarl.io

2

Figure 1: UML Class Diagram defining the major concepts in the SARL meta-model.

features: concurrency, distribution, interaction, decentralization, reactivity, au-
tonomy and dynamic reconfiguration. The main perspective that guided the
creation of SARL is the establishment of an open and easily extensible lan-
guage. Such language should thus provide a reduced set of key concepts that fo-
cuses solely on the principles considered as essential to implement a multi-agent
system. The major concepts of SARL are explained below, and illustrated in
Figure 1.

2.1. Action

An action is a specification of a transformation of a part of the designed
system or its environment. This transformation guarantees resulting properties
if the system before the transformation satisfies a set of constraints. An action
a ∈ A is defined by its prototype and its body, as illustrated by Equation 1. The
prototype is composed by the name na of the action, a sequence Pa of formal
parameters, and the type ra of the returned values. The body Ba is a sequence
of expressions — a subset of the language constructs for describing evaluable
expressions — that represents transformations. These two parts of the action’s
definition are represented respectively by the Action Prototype and Action in
Figure 1.

a = 〈na, Pa, ra, Ba〉 (1)

For pedagogical reasons, the SARL action concept could be linked to method
concept into the object-oriented paradigm: both concepts represent the same
language construct.

2.2. Capacity and Skill

A capacity c ∈ C is the specification of a collection Pc of actions’ prototypes,
as defined in Equation 2. A capacity could be used to specify what an agent

3

can do, and what a behavior requires for its execution.

c = 〈Sc, Pc, Fc〉 (2)

This specification makes no assumptions about its implementation. So that,
the bodies of the actions are not defined into the capacity: ∀p ∈ Pc ⊆ A, Bp = ∅.
The capacity c could inherit a part of its definition from another capacities Sc.
The fully expanded set Fc of actions that are defined into the capacity c is
defined by: Fc = Pc ∪ {Fs/s ∈ Sc}.

A skill s ∈ S is a possible implementation of capacities Cs fulfilling all the
constraints of these specifications, as defined by Equation 3.

s = 〈ss, Cs, As, Fs〉 (3)

As is the set implementations of the actions from the capacities Cs, such that
∀a ∈ As, Ba 6= ∅ and As ⊆

⋃
c∈Cs

Fc. Similarly to a capacity, a skill s could
inherit a part of its definition from another skill ss. The fully expanded sequence
Fs of actions that are defined into the skill s is defined by: Fs = As∪Fss . Skill s
provides an implementation for each capacity action: a ∈ Fs/∀a ∈ Ac,∀c ∈ Cs.

An agent can dynamically evolve by learning or acquiring new capacities.
It can also dynamically change the skill associated to a given capacity [12, 1].
Acquiring new capacities also enables an agent to get access to new behaviors
requiring these capacities. This provides agents with a self-adaptation mech-
anism that allow them to dynamically change their architecture according to
their current needs and goals.

2.3. Context and Spaces

A space p ∈ P is the support of the interaction between agents, respecting
the rules defined in an associated space specification. SARL natively defines a
particular type of space, namely the event space to provide a support to event-
driven interactions. Within an event space, agents communicate using events.
Nevertheless, it is possible to define programmatically new types of spaces that
are not event-based. Equation 4 provides the definition of a space p. Mp is the
set of agents, which are participating to the interaction within the space, i.o.w.
the members of this space. Rp is the functional definition of the interaction
mechanism that is supported by the space. It may be a routing algorithm
of messages between the space’s participants, or the interaction specification
among agents and artifacts [13].

p = 〈Mp, Rp〉 (4)

A context c ∈ O defines the perimeter/boundary of a sub-system, and gathers
a collection Sc of spaces, as defined in Equation 5.

c = 〈Sc, dc〉 (5)

Since their creation, agents are incorporated into a context called the default
context (see the upper part of Figure 2, level n). The notion of context makes

4

complete sense when agents are considered composed or holonic (see Section 2.6
for details).

In each context, there is at least one particular space dc ∈ Sc, called default
space, to which all agents in context c belong. This ensures the existence of a
common shared space to all agents in the same context. Each agent can then
create specific public or private spaces to achieve its personal goals.

The concept of environment, as defined by Weyns et al. [14] could be linked
to the concept of context in SARL. The spaces into a context become views to
the environment [15]. Consequently, spaces restrict how agents perceive and act
in the environment. Rodriguez et al. [16] have proposed to model the environ-
ment by defining a context, a space, and specific agents that are supporting the
endogenous dynamics of the environment. This last type of agent is mandatory
because there is no syntactic way within SARL for defining a context: only
spaces and agents could be programmed.

When an agent is created, it belongs to a context, named its default context.
During its life, an agent may join or leave other external contexts, as illustrated
by Figure 2 with agent A. The invariant condition is each agent belongs to a
default context, whenever this default context is not the one in which the agent
was created. Figure 1 illustrates this membership relation by the “member of”
association between Agent and Space. In other words, an agent belongs to a
context if, and only if, it is member of the default space of this context. The
direct relation between the agent and context concepts is related to the inner
context, which is detailed in Section 2.6.

2.4. Agent and Behavior

An agent a ∈ T is an autonomous entity having a set Ba of behaviors, and
a set Sa of skills to realize the capacities it exhibits. It is defined in Equation 6,
and represented by the Agent type in Figure 1.

a = 〈Ba, Sa,Ma, da, Ca, ia〉 (6)

Agent a has a set Sa of individual skills that may be used for building the
agent’s behaviors. Agent a defines the mapping Ma : C→ S from one capacity
to a single skill implementation. From this definition, the agent a is able to
determine which skill should be used when a capacity’s action is invoked. A set of
capacity-skill pairs, named the built-in capacities (BIC) is defined into the SARL
specifications [10]. They are considered as essential to respect the commonly
accepted competences of agents, such autonomy, reactivity, pro-activity and
social capacities. The full set of BICs are presented in Section 4 because they
must be implemented into, and provided by the SARL run-time environment.

Among these BICs, the DefaultContextInteractions and
ExternalContextAccess capacities are defined. They give respectively
the access to the agent’s default context da, and the set Ca of contexts in which
the agents belong to, such that da ∈ Ca. ia represents the internal context of
the agent, which is detailed in Section 2.6.

5

Another BIC is the Behaviors capacity. It enables an agent to incorporate a
collection Ba ⊂ B of behaviors that will determine its global conduct. A behavior
b ∈ B maps a collection of perceptions represented by events to a sequence of
actions. Ob : E→ P(A) is the mapping function in Equation 7.

b = 〈Ob〉 (7)

An agent has also a default behavior directly described within its definition. It
is illustrated by the relationship between Agent and Action types in Figure 1.

By default, the various behaviors of an agent communicate using an event-
driven approach. An event e ∈ E is the specification of anything that happens in
a space s, and may potentially trigger effects by a listener, e.g. agent, behavior.

2.5. Example of SARL Program

For clarity reasons, let the definition of an agent, named FactorialAgent

that is able to compute a factorial. This example is simple enough for illustrated
the basics properties and features of the SARL language. Nevertheless, more
complex implementation of multi-agent systems with SARL could be found in
[17, 18, 19, 20, 21, 22, 23, 24].

FactorialAgent agent waits for other agent’s request to calculate
(Calculate event) a factorial. Once computed, it is notifying the result us-
ing the ComputationDone event.

event Factorial {
2 var upto : int

var number : int
4 var value : int
}

6 event Calculate {
var number : int

8 }
event ComputationDone {

10 var result : int
}

12 agent FactorialAgent {
uses Lifecycle , Behaviors , DefaultContextInteractions

14 on Factorial [occurrence . number < occurrence . upto] {
wake (new Factorial => [

16 upto = occurrence . upto
number = occurrence . number + 1

18 value = occurrence . value ∗ (occurrence . number + 1)
])

20 }
on Factorial [occurrence . number == occurrence . upto] {

22 emit (new ComputationDone => [result = occurrence . value])
killMe

24 }
on Calculate {

26 wake (new Factorial => [
upto = occurrence . number

28 number = 0
value = 1

30])
}

32 }

Listing 1: Computation of Factorial with a SARL Agent

6

An agent is declared with the agent keyword (line 12). In the agent’s body
block, we can declare mental states (in the form of attributes), actions (or
functions and event handlers). Actions that an agent can perform could be
specified by capacities or natively inside the agent definition. Keyword uses
imports the actions defined in capacities, so that, they can be accessed directly
as an agent native function.

Agent perceptions and the sequence of actions the agent wants to perform for
each perception are defined. This is achieved using the clause on <perception
> [<guard>] {<body>}. FactorialAgent declares three behavioral event han-
dlers (lines 14, 21, and 25). Perceptions for SARL agents take the form of
events, and they can be declared using the event keyword. For instance, the
Calculate event is defined at line 6. An event can carry information, in our
case the number we want the factorial for.

When the Calculate event is perceived (line 25), the agent can access the
event’s instance using the occurrence keyword. At line 27, it sets the upto

attribute using the information for the Calculate event occurrence.
From this point, the agent starts computing the factorial. The Behaviors

built-in capacity provides the agent with mechanisms to (un)register new be-
haviors, and fire new internal events (wake action). For calculating the factorial,
the agent fires an internal event of type Factorial using the wake action.

Two behaviors are declared for Factorial event (lines 14 and 21). When
an event is perceived, SARL agents execute all their behaviors for that event
type concurrently. Behaviors can declare guards to prevent their execution if
required. So, the behavior at line 14 is only executed if occurrence.number
< occurrence.upto evaluates to true. This behavior simply calculates the

factorial for the next integer, and fires a Factorial event again. As illustrated,
the guard’s expression may reference the received event or any of its attributes.
Nevertheless, any variable that is declared into the enclosing type (agent, be-
havior, etc.) of the guard, or any statically accessible variable or function may
be referenced too.

Likewise, when the factorial for the requested number (stored in upto at-
tribute) is found, the behavior at line 21 is executed. The emit action fires an
event in the default space of the default context for notifying the computation is
finished. After that, the agent stops its execution using the killMe action from
the Lifecycle capacity.

It is necessary to clearly understand the difference between wake and emit

actions. Wake fires an internal event within the agent that may be perceived by
its own behaviors, and its members when it is composed by other agents. Emit
action enables to fire an event in a given space that is outside the agent itself.

2.6. Recursive Agent and Hierarchical Multiagent System

In 1967, Koestler coined the term holon as an attempt to conciliate holistic
and reductionist visions of the world. A holon represents a part-whole construct
that can be seen as a component of a higher level system or as whole composed of
other holons as substructures [25]. Holonic systems grew from the need to find

7

Default Space
(Holonic group)

Le
v
e
l
n

Le
v
e
l
n
-1

InnerContext

Addr-1Addr-2

Addr-3 Addr-6 Addr-7Addr-5Addr-4

Addr-8 Addr-9

Addr11Addr10Addr12 Addr13 Addr14

Addr15 Addr16 Addr17 Addr18

Other Spaces
(Production groups)

Default Space Default Space

DefaultContext ExternalContext 1

AH I F G

B C D E

Figure 2: A Holon or a recursive agent in SARL

comprehensive construct that could help to explain social phenomena. Since
then, it came to be used in a wide range of domains, including philosophy [26],
manufacturing systems [27], and multi-agent systems [28].

Several works have studied this question, and they have proposed a number
of models inspired from their experience in different domains. In many cases,
the idea of agents composed of other agents could be found. Each researcher
gives a specific name to this type of agent. Ferber [29] discusses individual and
collective agents. Meta-agents are proposed by Holland [30]. Agentified Groups
are taken into account in the works of Odell et al. [31]. All of these are examples
of how researchers have called these “aggregated” entities that are composed of
lower level agents. More recently, the importance of holonic MAS has been
recognize by different methodologies such as ASPECS [32] and O-MASE [33].

In SARL, we recognize that agents can be composed of other agents. There-
fore, SARL agents are in fact holons that can compose each other to define
hierarchical or recursive MAS, called holarchies. In order to achieve this, SARL
agents are structures that compose each other via their contexts. Each agent
defines its own internal context, called inner context and it is part of one or more
external contexts. For instance, in Figure 2, agent A is taking part of two exter-
nal contexts, i.e. Default Context and External Context 1. The same agent
has its own inner context where agents B, C, D and E evolve. Because, an agent
may belong to a default and an external context at the same time, the resulting
structure in not a simple hierarchy of agents (agent composed by agents). It is a
directed graph of agents, with membership relations among them. In the SARL
meta-model (Figure 1), these relations are formally supported by the “Member
of” relation between an agent and a space.

8

SARL
program

SARL
Compiler Java

program
Java

Bytecode

Java
Compiler

SARL Run-time
Environment

Eclipse with
SARL plugin,
Maven SARL

plugin,
sarlc compiler

Eclipse ecl,
javac, jikes,

or J# compiler

Janus, ...

Python
program

Figure 3: Compilation and Run-time Toolchain for SARL

3. SARL Tool-chain

The SARL tool-chain is the set of programming tools that are used to per-
form a multi-agent system with SARL. As illustrated by Figure 3, three types
of tools are used in sequence in order to create and run an agent-based system:

• SARL Compiler: The SARL compiler transforms the source SARL
language to the target language. Several target languages may be consid-
ered by this compiler. Because most of the agent frameworks are written
with the Java language, the SARL compiler targets this object-oriented
programming language by default, but not restricted to (a Python gener-
ator is also provided as proof-of-concept). The SARL compiler translates
SARL statements into their object-oriented equivalent statements. Three
different implementations of the SARL compiler are provided: a specific
command-line tool (sarlc), the Eclipse development environment plugin,
and a Maven plugin.

• Java Compiler: The files generated by the SARL compiler are standard
Java files. They must be compiled with one of the standard tools that
are available: eclipsec2, javac3, gcj4, or jikes5. The result of the Java
compilation is a collection of binary files (a.k.a. byte-code files) that may
be run by a virtual machine.

• SARL Run-time Environment: The SARL Run-time Environment
(SRE) is a collection of tools that enables running of an agent-based appli-
cation written with SARL. Such an SRE must provide the implementation
for each service and feature that are assumed to be provided by the run-
time environment. Usually, a Java-based SRE is composed by the Java
Run-time Environment (JRE) and a Java framework that supports the
execution of the agents upon the JRE.

2Eclipse eclipsec: https://www.eclipse.org
3Oracle JDK: http://www.oracle.com/technetwork/java/javase/overview/index.html
4GNU Java Compiler: http://gcc.gnu.org
5IBM jikes: http://jikes.sourceforge.net

9

In order to create a valid SRE, it is mandatory to define the core features that
are expected into a SRE implementation. Section 4 describes the key elements
that should be considered for solving this specific point.

In order to give a Proof-of-Concept, a specific SRE implementation based
on the Janus platform [7] is provided in Section 6. Janus is a Java application,
i.e. a Java virtual machine is used for running the program upon a specific
Java library that provides the features dedicated to the SARL agents. Janus
was selected because, since its creation in 2008, it provides the key features for
implementing holonic multi-agent systems. Therefore, it is the best candidate
for becoming a SRE.

4. Key Points for SRE Creation

In this section, the major key points that should be considered for creating
a SARL Run-time Environment are explained: support to the agent’s life-cycle,
and implementation of the built-in capacities.

4.1. Agent’s Lifecycle

SARL does not imposes a specific agent’s control loop. Indeed, when agents
are spawned, the SRE is in charge of creating the agent instance and installing
the skills associated to the built-in capacities into the agents. Then, when an
agent is ready to begin its execution, SRE fires an Initialize event occur-
rence. This occurrence contains the initialization parameters for the agent’s
instance. Likewise, when the agent has decided to stop its own execution (using
the killMe action from the Lifecycle capacity), SRE fires an Destroy event
occurrence. It enables the agent to release any resource it may still hold. It is
important to notice that agents cannot kill other agents, not even those that
they have spawned. One of the key characteristics of an agent is its autonomy.
From its definition, no other agent should be able to stop its execution without
its consent. The MAS designer is free to implement any control or authority
protocol for their own application scenarios.

4.2. Built-in Capacities

Every agent in SARL has a set of built-in capacities (BIC) considered essen-
tial to respect the commonly accepted competences of agents. These capacities
are considered the main building blocks on top of which other higher level ca-
pacities and skills can be constructed. They are defined in the SARL language
specifications, but the skills implementing them are provided by the SRE. This
latest is in charge for creating the BICs’ skills, and injecting them into an agent,
before its execution begins. Therefore, when the agent receives the Initialize

event, they are already available. The current eight defined BICs, and the
actions they provide along their action signatures are:

• ExternalContextAccess provides access to the contexts that the agent
is a part of, and the actions required to join and leave new contexts. The
external context of the agent A is shown at the top right part of Figure 2.

10

• InnerContextAccess provides access to the inner context of the agent.
This is keystone for holonic agent implementation. The inner context of
the agent A is shown at the bottom part of Figure 2.

• Behaviors As previously described, agent can dynamically (un)register
behaviors and trigger them with the wake action. This capacity is closely
related to the InnerContextAccess to enable a high-level abstraction on
holonic MAS development.

• Lifecycle provides actions to spawn new agents on different external
contexts (peers), and the inner context (as holonic members). It also
provides the killMe action to stop the agent execution.

• Schedules enables the agent to schedule tasks for future or periodic exe-
cution.

• DefaultContextInteractions is actually provided for convenience. It
assumes that the action is performed on the agent’s default context (upper
left part of Figure 2) and its default space. For instance, the emit action
is a shortcut for defaultContext.defaultSpace.emit(...). Therefore, it
is actually created on top of the other BICs.

• Logging provides the agents for writing messages on the agent’s log. The
messages may be shown according to a severity level, e.g. information,
warning, error.

• Time provides the agents for accessing to the current time. The time may
be the operating system time, or a simulation time, depending on the
implementation of the BIC within the SRE.

4.3. Parallel Execution

In most of the agent frameworks, e.g. Jade [4] and Janus [7] (before its
adaptation to SARL), each agent is run on a separate execution resource, i.e.
a thread. This design choice enables each agent managing its own execution
resource, and participates to its autonomy. On several other platforms, e.g.
TinyMAS6, the agents are executed in turn in a loop. The parallel execution of
the agents is therefore simulated.

SARL encourages a massively parallel execution of agents and behaviors.
An agent entry point is a part of the agent behavior that is invoked from the
outside of the agent. In SARL, the entry points are the behavior event handlers,
specified by the on keyword. Each of these entry points is associated to a
separate thread. Parallel execution of the pro-active behaviors of an agent is
supported by the tasks that are launched with the Schedules built-in capacity.

Whatever the agent execution mechanism used by a SRE (thread-based or
loop-based), a SARL developer always assumes that the agent’s entry points
are executed in parallel when he is writing the event handlers.

6TinyMAS Platform: http://www.arakhne.org/tinymas

11

5. Selection of an Agent Framework as SRE Candidate

SARL language specifies a set of concepts and their relations. It defines on
top of them a collection of Built-In Capacities for agents. However, the SARL
project does not impose a particular execution infrastructure. We consider that
many different implementations of these concepts can be provided, and it can
help SARL be developed faster. In this section, four Java-based agent platforms
are considered as candidates for implementing a SRE: Jade [4], NetLogo [5],
GAMA [6], and Janus [7].

According to the key points that are described in Section 4, several criteria
are used to compare these agent frameworks:

• Application type: Multi-agent systems have a very wide scope of appli-
cation, including 3D simulation, geography simulation, social simulation,
video game.

• Agent Type Definition: Definition of a new agent may need to extend
an existing feature or use specific language statements.

• Agent Behavior Definition: Definition of a new agent behavior may
need to extend an existing feature or use specific language statements.

• Interaction Mechanism: This criterion indicates the type of interac-
tion mechanism that is used by the agent framework: message exchanges,
event-based interaction, stigmergy...

• Agent Initialization: This criterion indicates how an agent may be
initialized.

• Agent Destruction: The destruction of an agent causes the release of
resources. This criterion specifies the means for implementing a release
function.

• Agent Execution: Agent execution mechanism is a key module of the
agent platform. The type of mechanism may be synchronous; i.e. agents
are run in a loop, or multi-threaded.

• Hierarchical Multiagent System: Hierarchical systems, and specifi-
cally holonic systems are a key principle behind the SARL agent program-
ming language. This criterion indicates if, and how, a hierarchy of agents
is supported by the agent framework.

Table 1 provides an overview of our agent framework comparison. Jade and
Janus are both general purpose platforms: they could be used for building any
agent-based application, including embedded system and simulation applica-
tions. NetLogo and GAMA are simulation platforms because they enables to
build simulation software. We advocate that a general purpose platform fits
better the needs for the SARL agents. Indeed, SARL does not target a specific
application domain. It is defined for enabling the building of embedded and
simulation-based applications, for instances.

12

S
A

R
L

K
ey

C
on

ce
p

ts
J
ad

e
[4

]
N

et
L

o
g
o

[5
]

G
A

M
A

[6
]

J
a
n
u

s
[7

]

A
p

p
li

ca
ti

on
T

y
p

e
ge

n
er

al
p

u
rp

o
se

si
m

u
la

ti
o
n

si
m

u
la

ti
o
n

g
en

er
a
l

p
u

rp
o
se

A
ge

n
t

T
y
p

e
D

efi
n

it
io

n
ex

te
n

si
on

o
f

A
g
e
n
t

ty
p

e
d

efi
n

it
io

n
o
f

sp
ec

ie
s,

n
o

p
u

b
li

c
J
av

a
A

P
I

d
efi

n
it

io
n

o
f

sp
ec

ie
s

ex
te

n
si

o
n

o
f

A
g
e
n
t

ty
p

e

A
ge

n
t

B
eh

av
io

r
D

efi
n

it
io

n
ex

te
n

si
on

o
f

B
e
h
a
v
i
o
r

ty
p

e
-

-
o
rg

a
n

iz
a
ti

o
n

a
l

m
o
d

el
[3

2
]

In
te

ra
ct

io
n

M
ec

h
an

is
m

m
ai

lb
ox

w
it

h
m

es
sa

ge
s

st
ig

m
er

g
y

m
a
il

b
ox

w
it

h
m

es
sa

g
es

m
a
il

b
ox

w
it

h
m

es
sa

g
es

A
ge

n
t

In
it

ia
li

za
ti

on
ov

er
ri

d
in

g
o
f

th
e

s
e
t
u
p

fu
n

ct
io

n
sp

ec
ifi

c
st

a
te

-
m

en
t
t
o
s
e
t
u
p

ov
er

ri
d

in
g

o
f

th
e

_
_
i
n
i
t
_
_

fu
n

c-
ti

o
n

ov
er

ri
d

in
g

o
f

th
e

s
t
a
r
t

fu
n

ct
io

n

A
ge

n
t

D
es

tr
u

ct
io

n
ov

er
ri

d
in

g
o
f

th
e

t
a
k
e
D
o
w
n

fu
n

c-
ti

on

-
-

ov
er

ri
d

in
g

o
f

th
e

e
n
d

fu
n

ct
io

n

A
ge

n
t

E
x
ec

u
ti

on
on

e
th

re
a
d

p
er

ag
en

t
sy

n
ch

ro
n

e
ex

e-
cu

ti
o
n

sy
n

ch
ro

n
e

ex
ec

u
ti

o
n

,
_
_
s
t
e
p
_
_

fu
n

c-
ti

o
n

ca
ll

s

o
n

e
th

re
a
d

p
er

a
g
en

t
a
n

d
sy

n
ch

ro
n

e
ex

-
ec

u
ti

o
n

,
b

o
th

n
ee

d
ov

er
ri

d
in

g
o
f

th
e

l
i
v
e

fu
n

ct
io

n
H

ie
ra

rc
h

ic
al

M
u

lt
ia

ge
n
t

S
y
st

em
N

on
e

N
o
n

e
H

ie
ra

rc
h
y

o
f

a
g
en

ts
H

o
la

rc
h
y

Table 1: Mapping of the SARL concepts to the existing agent platforms

13

All the existing platforms that are included in this comparison provide a
message-based interaction mechanism: agents are sending messages to other
agents. The receiving agents decide to get the messages from their mail boxes.
This approach corresponds to a pro-active behavior: consuming a message is a
direct and explicit decision of the agent. The messages are not given to the agent
as part of its reactive behavior. It does not fit the reactive interaction behavior,
based on events, that is expected by the SARL developers. The creation of an
SRE, based on all the above frameworks needs a complete recast of the data
exchange mechanism.

The agent’s life-cycle is almost supported in the same way by all the above
platforms. Initialization and destruction functions are invoked at the beginning
and end of the agent’s life. In between, the agent’s life is supported by a specific
function that is called regularly by the agent framework. SARL specification
does not assume the existence of this function. In order to make each plat-
form compliant with SARL, this agent running function should read the agent
mailbox and fires corresponding events, for example.

Agent execution is another key feature of an agent framework. The existing
frameworks use a single thread to each agent. According to the execution mech-
anism that is expected by SARL, the execution mechanism should be adapted
to enable threaded execution of the event handlers. Or, this parallel execution
should be simulated in order to give the illusion to the agent’s code that the
event handlers are executed in parallel. Regarding the agent execution func-
tion mentioned above, it considered as the place where to specify the execution
mechanism mapping.

The last criterion focuses on the support of hierarchical systems. Two agent
frameworks support explicitly such systems, i.e. GAMA and Janus. Only Janus
fully supports the concept of holon.

According to all these assessments, we have decided to adapt the Janus
platform in order to create a run-time environment for the SARL applications.
Indeed, Janus is the framework, which covers the largest amount of features that
are expected by SARL developers. The key element that has been considered for
taking this decision is the support of holonic multi-agent systems, which is the
best within Janus, from our point of view. This decision is also taken according
to the software development effort to be spent for creating a SRE: lower is the
amount of code to be written, higher is our interest to the SRE candidate.

6. The Janus Platform as a SARL Run-time Environment

The Janus platform7 is re-designed and re-implemented in order to serve
as the software execution environment for the SARL programs. This revised
version of Janus implements all the required infrastructure to execute a MAS,
which is programmed using SARL. It fulfills the SARL requirements, such as
fully distributed execution of the agent’s behaviors, and the automatic discovery

7Official website: http://www.janusproject.io

14

Virtual Machine

Operating System

InternalEventBus

MicroKernel

InnerContext Lifecycle

Logging

Behaviors

ExternalContextDefaultContext Schedules

Janus Kernel Infrastructure

Kernel DiscoveryNetworkContext space

Distributed data Executor Logging Spawn

Agents

Figure 4: Architecture of the Janus platform

of kernels. Janus adopts best practices in current software development, such as
the Inversion of Control8. It also benefits from new technologies like Distributed
Data Structures9. The main purpose of this work is to adapt Janus to become a
SRE, and therefore provides an implementation to each of the built-in capacities.

6.1. General Service-based Architecture

A service-oriented architecture (SOA) is a style of software design where
services are provided to the other components by application components. The
basic principles of SOA are independent of vendors, products and technologies
[34]. A service is a discrete unit of features that can be accessed remotely, acted
upon, and updated independently, such as retrieving a credit card statement
on-line.

A service has four properties according the definition given by the Open
Group10: (i) it logically represents a business activity with a specified outcome;
(ii) it is self-contained; (iii) it is a black box for its consumers; and (iv) it
may consist of other underlying services. Different services can be used in
conjunction to provide the functionality of a large software application [35]. So
far, the definition could be a definition of modular programming in the 1970s.

8Google Guice: https://code.google.com/p/google-guice/
9In-Memory Data Grid like Hazelcast: http://www.hazelcast.com

10Service-Oriented Architecture Standards: http://www.opengroup.org/standards/soa

15

Service-oriented architecture is less about how to modularize an application.
It is more about how to compose an application by integration of distributed,
separately-maintained and deployed software components. SOA is enabled by
technologies and standards that make it easier for components to communicate
and cooperate.

According to these principles, the Janus platform is redesigned in order to
provide eight services. As illustrated by Figure 4, these services constitute the
basis of the built-in capacity implementation. The Janus services are aggregated
into two categories:

1. infrastructure services, which are managing the relationship with the un-
derlying operation system and the virtual machine.

2. services that are managing features that are accessible to the built-in ca-
pacities.

These services are detailed in the following sections according to the given
presentation template:

Description: Goal and activities that are carried by this service out.
Start-up: Description of the activities that are executed at the start-

up of the service.
Shut-down: Description of the activities that are executed at the shut-

down of the service.
Functions: Descriptions of the functions that are provided by the ser-

vice in its public interface.
Events: List of the events that are fired by the service, and that

could be listened by external objects.

The rest of this section provides details on the height services defined within
the Janus framework.

6.1.1. Infrastructure Service

Description: Manages the resources that are provided by the Java Vir-
tual Machine or the operating system.

Start-up: Start up the Hazelcast manager (http://www.hazelcast.
com). Hazelcast is an in-memory data grid library that is
used to create and manage data structures distributed other
a computer network.

Shut-down: Shut down the Hazelcast library.
Functions: -
Events: -

16

6.1.2. Logging Service

Description: Enables an agent to output messages in a specific log, with
associated emergency level. The service implementation is
based upon the Oracle Logging API, included into all the
Java run-time environments.

Start-up: -
Shut-down: -
Functions: debug, info, warning and error functions. They take the

message to be logged as argument.
Events: -

6.1.3. Executor Service

Description: This service provides the functions for launching tasks
in parallel. The implementation is based on the Java
Executors utility class, which provides tools for launching
single-run and periodic tasks.

Start-up: Create and initialize a Java executor service for single-run
tasks, and one for periodic tasks.

Shut-down: Stop the Java executor services.
Functions:

• execute(r): execute the task r in parallel.
• executeMultipleTimesInParallelAndWaitFor−
Termination(r, n): execute n instances of the task
in parallel.

• schedule(t, r): execute the task r in t milliseconds.
• scheduleAtFixedRate(t, r): execute the task r ev-

ery t milli-seconds.
• scheduleAtFixedDelay(t, r): execute the task r in-

finitely, and wait t milliseconds between each run.

Events: -

17

6.1.4. Context-Space Service

Description: This service is in charge of maintaining the repositories of
the agent contexts and the agent interaction spaces that
are created in the system. This service is also in charge of
routing the events between agents through the spaces. The
agent execution unit in Janus is the event handler: the part
of the SARL agent that is executed when a specific event
is received. Each of these units are executed in parallel to
the other units, even within the same agent.

Start-up: Synchronization of the context and space repositories with
other Janus instances over the computer network.

Shut-down: -
Functions:

• createContext(id): create a context with the given
identifier.

• removeContext(id): remove the context with the
given identifier, and destroy all the spaces inside the
context.

• getContexts(): return all the existing contexts.
• getContext(id): return the context with the given

identifier.
• createSpace(c, id): create a space in the context c

with the given identifier.
• removeSpace(c, id): remove the space with the given

identifier from the context c.
• getSpaces(c): return all the existing spaces in the

context c.
• getSpace(c, id): reply the context with the given

identifier in the context c.

Events:
• ContextCreated, ContextDestroyed when a context

was created or destroyed.
• SpaceCreated, SpaceDestroyed when a space was

created or destroyed.

Janus enables the distribution a SARL program over a network of (virtual)
machines — (V)M’s. From the SARL agent point of view, this distribution
over (V)M’s is hidden. Indeed, we argue that any SARL program runs on a
big virtual machine that is covering all the connected (V)M’s. These low-level
machines are not visible to the SARL agent. Consequently, a context is seen
as a single entity over the (V)M’s by the agents. From the Janus point of

18

view, each context instance is a shared object over the (V)M’s. Thanks to the
underlying Hazelcast in-memory data grid library, the different context instances
are replicated and dynamically synchronized over the (V)M’s. Spaces are also
shared upon the same infrastructure.

A safety question arises when enabling (V)M communication: what happens
when two (V)M’s cannot communicate any more? Thanks to the Hazelcast
library, no data is removed from the shared data structures (context list, space
list, agent list, etc.) It means that the agents can continue to send events to
agents that are at the other side of the lost connection. But, Janus does not send
the events to the remote agent because of the connection loss. According to the
Janus specification, there is no warranty that an event is delivered to another
agent into a remote (V)M. Consequently, the agent communication protocol
should take care of any loss of event. When the (V)M’s connection is back,
Hazelcast library synchronizes the local instances of the data structures with
the remote instances.

6.1.5. Spawning Service

Description: This service is in charge of managing the agent’s life-cycle.
It creates instances of agents, and registers them to the
other services of the framework. This service provides the
functions for stopping the agents. An agent can be killed
only if it has no member agent inside (see Section 2.6). The
service ensures that the agent’s life-cycle events are fired to
the agent: Initialize and Destroy events.

Start-up: -
Shut-down: Stop all the running agents.
Functions:

• spawn(t, n): create n instances of agent of type t.
• killAgent(id): destroy the agent when the given

identifier.

Events:
• AgentSpawned when an agent was created.
• AgentDestroy when an agent was destroyed.

6.1.6. Networking Services

Three networking services are provided by the Janus platform: kernel dis-
covery, distributed data, and network event routing services.

19

Name: Kernel discovery
Description: The kernel discovery service is in charge of maintaining a

up-to-date list of the Janus kernels that are alive on a local
computer network. This service uses the Hazelcast library,
which is already maintaining a list of the Hazelcast nodes
over the network.

Start-up: Advertise the current kernel over the computer network.
Shut-down: Notification of the disappearance of the current kernel to

the other Janus kernels.
Functions:

• getKernels(): return the list of the Janus kernels.

Events:
• KernelDiscovered when a Janus kernel was de-

tected.
• KernelDisappeared when a Janus kernel is no more

reachable.

Name: Distributed data structures
Description: The distributed data service provides functions to create

data structures (hash tables, lists, etc.) that are accessible
and synchronized over the computer network. This service
uses the Hazelcast library.

Start-up: -
Shut-down: -
Functions: newMap(id) and newList(id) are provided to create the

data structures with the given identifiers. These functions
replicate the data structures in all the kernel thanks to the
Hazelcast library.

Events: -

20

Name: Network event routing
Description: The network event routing service is in charge of routing

the events that are fired by the agents to the agents that are
hosted on a remote computer. This service opens a socket
channel, based on the ZeroMQ library11 to each remote
Janus kernel. This channel will be used for sending events
to the remotely hosted agents.

Start-up: -
Shut-down: -
Functions: -
Events:

• EventReceived when an event is received from a re-
mote Janus kernel.

6.2. Built-in Capacity Implementation

SRE creates and injects the BICs in an agent before its execution begins.
Janus platform provides an implementation for each BIC described in Section
4.2. Table 2 provides the mapping from a BIC to the Janus services that
are used for its implementation. Indeed, the BICs call the Janus services
in order to realize there behaviors. The concrete implementation code may
be found on Github: https://github.com/sarl/sarl/tree/master/sre/io.
janusproject/io.janusproject.plugin.

Built-in Capacity Janus Services

ExternalContextAccess Context-Space
InnerContextAccess Context-Space
Behaviors Context-Space, Executor
Lifecycle Spawning, Context-Space
Schedules Executor
DefaultContextInteractions Context-Space
Logging Logging
Time Executor

Table 2: Mapping between the Built-in Capacities and the Janus Services.

11ZeroMQ: http://zeromq.org/

21

7. Performance Evaluation

In order to be able to measure the performance of the new Janus imple-
mentation, we created a very simple stigmergy-inspired ping-pong application
[17]. A central agent representing the agent environment, as defined by Weyns
et al. [14] and Galland and Gaud [23], is introduced as the mean of communi-
cation between the other agents. Consequently, two agent types are considered:
(i) the application agents, which are sending the ping-pong events, and (ii) the
environment agent, which represents the environment in which the application
agents are located. The times T0, T1, TA, TB , TC and TD mentioned below are
simulated application time values.

In the time period starting at T0, every appplication agent has 20 % proba-
bility to emit a ping message to X other agents where X ∼ Uniform(1 : 100).
The message needs to be delivered in the time period Td ∼ Uniform(T1 : Te)
where Te denotes the end of simulated time. The measured time is illustrated
in Figure 5. Where T0 and T1 denote the start and the end of the interval. Ta

denotes the end of the reception of the events sent by the environment agent
to the application agents. Tb is the end of “application level payload work”
done by the simulation agents. And finally, Tc is the end of delivering of the
AgentIsReadyEvent events to the environment agent. For every time period,
the amount of emitted messages is computed together with the total amount
of time needed to execute this time period. Experiments are realized for 200
agents on a Linux Ubuntu 14.04LTS laptop with 8GB memory and a Intel Core
i5-4210M CPU 2.60GHz × 4. The number of time periods that are simulated
is 2 500.

T0

T1

Ta

Tb

Tc

Environment sends
perceptions to

all agents

Agents conduct
their algorithms

Sends ready
events

Wait for
slowest agents

M
e
a
su

re
d
 T

im
e

Figure 5: An overview of the time measurement in our experiments.

Experimental results are illustrated in the graph represented in Figure 6. In
our experiments, all the application agents have the same actions to do. Conse-
quently, they have approximately the same execution time. It is clear to see that
the execution time follows a constant tendency, and hence seems to be indepen-
dent of the number of processed events over the full range of observations. The
execution time for a single period between two consecutive increments of simu-
lated time includes: perception of the environment, application specific payload
work and end-of-period notification. The duration required for the payload work

22

 200

 300

 400

 500

 600

 700

 800

 0 2000 4000 6000 8000 10000

E
x
e

c
u

ti
o

n
 t

im
e

 f
o

r
it
e

ra
ti
o

n
 (

m
s
)

Total amount of Events handled by All Agents

Total amount of events handled
tendency

Figure 6: Graph that represents the total amount of events handled in a specific iteration
(x-axis) against the total execution time for that iteration in ms (y-axis) for the case of 200
agents and 2 500 iterations [17].

in the experiment is negligible. The large variance of the execution time masks
the expected dependency on the number of events.

8. Conclusion and Perspectives

SARL is a general-purpose agent-oriented programming language. This lan-
guage aims at providing the fundamental abstractions for dealing with essential
agent features: concurrency, distribution, interaction, decentralization, reactiv-
ity, autonomy and dynamic reconfiguration.

Every programming language specifies an execution model, and many im-
plement at least part of that model in a runtime system. In the case of SARL
programs, the SARL run-time environment (SRE) provides the tools and the
features that are mandatory for running such a program. In this paper, we
present the adaptation of the Janus platform for becoming the official and de-
fault SRE. Janus adopts the best practices in current software development,
such as Inversion of Control, and benefits from new technologies like Distributed
Data Structures.

The major perspectives of this work are listed below. First, Janus platform
is a standard Java application for which the performances must be analyzed in
detail, in order to be optimized accordingly. A comprehensive and systematic
comparison of the existing agent frameworks and the new version of Janus will
be realized.

23

Migration of agents over the different Janus kernels is not yet supported. A
specific service will be added into Janus, and a built-in capacity provided within
the SARL API, in order to query to migrate12.

Other agent-based platform may serve as SRE. GAMA platform [6] is a
possible candidate for creating a simulation environment for spatial and geo-
graphic applications. Gazebo platform [36, 37] is another candidate for creating
simulators of robots, including drones.

Finally, most of the embedded systems cannot execute a Java application.
The need of a specific SARL compiler, which generates C/C++ program arises.
A perspective of this work is to extend the SARL compiler for embedded sys-
tems, cloud platforms, and computer clusters, which are specific run-time envi-
ronments.

Acknowledgements

We would like to thank Glenn Cich and Luk Knapen, who have highly con-
tributed to the performance evaluation of the new Janus platform [17].

References

[1] M. Cossentino, S. Galland, N. Gaud, V. Hilaire, A. Koukam, How to con-
trol emergence of behaviours in a holarchy, in: the Int. Workshop on
Self-Adaptation for Robustness and Cooperation in Holonic Multi-Agent
Systems (SARC-2008) at the Second International Conference on Self-
Adaptive and Self-Organizing Systems (SASO 2008), IEEE Computer So-
ciety, Venice, Italy, 2008.

[2] S. A. DeLoach, The MaSE Methodology, Springer US, Boston, MA, 107–
125, 2004.

[3] M. Wooldridge, N. R. Jennings, D. Kinny, The Gaia Methodology for
Agent-Oriented Analysis and Design, Autonomous Agents and Multi-Agent
Systems 3 (3) (2000) 285–312.

[4] F. L. Bellifemine, G. Caire, D. Greenwoord, Developing Multi-Agent Sys-
tems with JADE, John Wiley & Sons, 2007.

[5] U. Wilensky, NetLogo, Tech. Rep., Center for Connected Learning and
Computer-Based Modeling, Northwestern University, Evanston, IL, 1999.

[6] A. Grignard, P. Taillandier, B. Gaudou, D. Vo, N. Huynh, A. Dro-
goul, GAMA 1.6: Advancing the Art of Complex Agent-Based Modeling
and Simulation, in: G. Boella, E. Elkind, B. Savarimuthu, F. Dignum,
M. Purvis (Eds.), PRIMA 2013: Principles and Practice of Multi-Agent
Systems, vol. 8291 of LNCS, Springer Berlin Heidelberg, 117–131, 2013.

12Agent migration feature: https://github.com/sarl/sarl/issues/747.

24

[7] S. Galland, N. Gaud, S. Rodriguez, V. Hilaire, Janus: Another Yet General-
Purpose Multiagent Platform, in: the 7th Agent-Oriented Software Engi-
neering Technical Forum (TFGAOSE-10), Agent Technical Fora, Agent
Technical Fora, Paris, France, 2010.

[8] D. Glake, J. Weyl, C. Dohmen, C. Hüning, T. Clemen, Modeling Through
Model Transformation with MARS 2.0, in: International Springer Simula-
tion Conference, dOI: 10.22360/springsim.2017.ads.005, 2017.

[9] R. H. Bordini, J. F. Hübner, M. Wooldridge, Programming Multi-Agent
Systems in AgentSpeak using Jason, Wiley, 1st edn., ISBN 978-0-470-
02900-8, 2007.

[10] S. Rodriguez, N. Gaud, S. Galland, SARL: A General-Purpose Agent-
Oriented Programming Language, in: Web Intelligence (WI) and Intelli-
gent Agent Technologies (IAT), 2014 IEEE/WIC/ACM International Joint
Conferences on, vol. 3, 103–110, 2014.

[11] A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman, Compilers: Principles,
Techniques, and Tools, Pearson Education, Inc, 2nd edn., ISBN 0-201-
10088-6, 2006.

[12] S. Rodriguez, N. Gaud, V. Hilaire, S. Galland, A. Koukam, An analysis and
design concept for self-organization in Holonic Multi-Agent Systems, in:
the International Workshop on Engineering Self-Organizing Applications
(ESOA’06), Springer-Verlag, 62–75, 2006.

[13] A. Ricci, M. Viroli, A. Omicini, Programming MAS with Artifacts, in:
International Workshop on Programming Multi-Agent Systems, Springer
Verlag, 2005.

[14] D. Weyns, A. Omicini, J. Odell, Environment as a First-class Abstraction
in Multi-Agent Systems, Autonomous Agents and Multi-Agent Systems
14 (1) (2007) 5–30, ISSN 1387-2532.

[15] S. Galland, F. Balbo, N. Gaud, S. Rodriguez, G. Picard, O. Boissier, A mul-
tidimensional environment implementation for enhancing agent interaction,
in: R. Bordini, E. Elkind (Eds.), 14th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS15), IFAAMAS, ACM In-Cooperation,
Istanbul, Turkey, ISBN 978-1-4503-3413-6, 1801–1802, URL http://www.

aamas2015.com/en/AAMAS_2015_USB/aamas/p1801.pdf, 2015.

[16] S. Rodriguez, S. Galland, N. Gaud, A New Perspective on Multi-
Agent Environment with SARL, in: International Workshop on Com-
munication for Humans, Agents, Robots, Machines and Sensors, Pro-
cedia Computer Science, Elsevier, Belfort, France, ISSN 1877-0509,
526–531, URL http://www.sciencedirect.com/science/article/pii/

S1877050915017275, best Paper Award, 2015.

25

[17] G. Cich, S. Galland, L. Knapen, A.-U.-H. Yasar, T. Bellemans, D. Janssens,
Addressing the Challenges of Conservative Event Synchronization for the
SARL Agent-Programming Language, in: the 15th International Con-
ference on Practical Applications of Agents and Multi-Agent Systems,
Springer, 2017.

[18] D. Lizondo, P. Araujo, A. Will, S. Rodriguez, Multiagent Model for Dis-
tributed Peak Shaving System with Demand-Side Management Approach,
in: 2017 First IEEE International Conference on Robotic Computing
(IRC), 352–357, dOI: 10.1109/irc.2017.50, 2017.

[19] M. Feraud, S. Galland, First Comparison of SARL to Other Agent-
Programming Languages and Frameworks, in: International Workshop on
Agent-based Modeling and Applications with SARL (SARL 2017), Proce-
dia Computer Science, Elsevier, dOI: 10.1016/j.procs.2017.05.389, 2017.

[20] S. Galland, F. Balbo, G. Picard, O. Boissier, N. Gaud, S. Rodriguez,
Environnement multidimensionnel pour contextualiser les interactions des
agents. Application à la simulation du trafic routier urbain., Special Issue
on Multiagent Systems of the ”Revue d’Intelligence Artificielle” 30 (1-2)
(2016) 81–108.

[21] G. Cich, L. Knapen, S. Galland, J. Vuurstaek, A. Neven, T. Bellemans,
Towards an Agent-based Model for Demand-Responsive Transport Serving
Thin Flows, in: The 5th International Workshop on Agent-based Mobil-
ity, Traffic and Transportation Models, Methodologies and Applications
(ABMTRANS 2016), Procedia Computer Science, Elsevier, 2016.

[22] G. Basso, M. Cossentino, V. Hilaire, F. Lauri, S. Rodriguez, V. Sei-
dita, Engineering multi-agent systems using feedback loops and hol-
archies, Engineering Applications of Artificial Intelligence 55 (2016) 14
– 25, ISSN 0952-1976, URL http://www.sciencedirect.com/science/

article/pii/S0952197616300999, dOI: 10.1016/j.engappai.2016.05.009.

[23] S. Galland, N. Gaud, Organizational and Holonic Modelling of a Simu-
lated and Synthetic Spatial Environment, E4MAS 2014 - 10 years later,
LNCS 9068 (1) (2015) 1–23, URL http://www.springer.com/us/book/

9783319238494.

[24] S. Galland, F. Balbo, N. Gaud, S. Rodriguez, G. Picard, O. Boissier, Con-
textualize Agent Interactions by Combining Social and Physical Dimen-
sions in the Environment, in: Y. Demazeau, K. Decker, F. De la prieta,
J. Bajo perez (Eds.), Advances in Practical Applications of Agents, Multi-
Agent Systems, and Sustainability: The PAAMS Collection. Lecture Notes
in Computer Science 9086., Springer International Publishing, 107–119,
dOI: 10.1007/978-3-319-18944-4˙9, 2015.

[25] A. Koestler, The Ghost in the Machine, Hutchinson, 1967.

26

[26] K. Wilber, Sex, Ecology, Spirituality: The Spirit of Evolution, Shambhala,
ISBN 9781570627446, 2000.

[27] E. van Leeuwen, D. Norrie, Holons and holarchies [intelligent manufactur-
ing systems], Manufacturing Engineer 76 (2) (1997) 86–88.

[28] C. Gerber, J. Siekmann, G. Vierke, Holonic Multi-Agent Systems, Tech.
Rep. DFKI-RR-99-03, Deutsches Forschungszentrum für Künztliche In-
teligenz - GmbH, Postfach 20 80, 67608 Kaiserslautern, FRG, 1999.

[29] J. Ferber, Multi-agent systems: an introduction to distributed artificial
intelligence, Addison-Wesley, 1999.

[30] J. H. Holland, Hidden order: how adaptation builds complexity, Addison-
Wesley, Reading, Mass., 1995.

[31] J. Odell, M. Nodine, R. Levy, A Metamodel for Agents, Roles, and Groups,
in: J. Odell, P. Giorgini, J. Müller (Eds.), Agent-Oriented Software Engi-
neering V, no. 3382 in LNCS, Springer Berlin Heidelberg, 78–92, 2005.

[32] M. Cossentino, N. Gaud, V. Hilaire, S. Galland, A. Koukam, ASPECS:
an agent-oriented software process for engineering complex systems - How
to design agent societies under a holonic perspective, Autonomous Agents
and Multi-Agent Systems 2 (2) (2010) 260–304.

[33] D. Case, S. DeLoach, Applying an O-MaSE Compliant Process to Develop
a Holonic Multiagent System for the Evaluation of Intelligent Power Distri-
bution Systems, in: M. Cossentino, A. El Fallah Seghrouchni, M. Winikoff
(Eds.), Engineering Multi-Agent Systems, no. 8245 in LNCS, Springer
Berlin Heidelberg, 78–96, 2013.

[34] Service-Oriented Architecture, Springer Berlin Heidelberg, Berlin, Hei-
delberg, ISBN 978-3-540-38284-3, 89–113, URL http://dx.doi.org/10.

1007/978-3-540-38284-3_5, 2007.

[35] A. T. Velte, Cloud Computing: A Practical Approach, McGraw Hill, 2010.

[36] C. Aguero, N. Koenig, I. Chen, H. Boyer, S. Peters, J. Hsu, B. Gerkey,
S. Paepcke, J. Rivero, J. Manzo, E. Krotkov, G. Pratt, Inside the Virtual
Robotics Challenge: Simulating Real-Time Robotic Disaster Response, Au-
tomation Science and Engineering, IEEE Transactions on 12 (2) (2015)
494–506, ISSN 1545-5955.

[37] N. Koenig, A. Howard, Design and Use Paradigms for Gazebo, An Open-
Source Multi-Robot Simulator, in: IEEE/RSJ International Conference on
Intelligent Robots and Systems, Sendai, Japan, 2149–2154, 2004.

27

Stéphane Galland supports a PhD thesis in 2001 at the
High National School of Mines of Saint-Etienne, France. He
proposed a methodological approach for the design and the
implementation of agent-based simulation of distributed in-
dustrial systems. In 2002, he integrated the Computer Science
department of the Belfort-Montbéliard University of Technol-
ogy, France, where he continues his research tasks on the topic
of agent-based modeling and simulation of complex systems

with a large scale and a multiview perspectives. In 2004 and 2005, Stéphane
Galland is responsible of the courses of the doctoral school for his University.
From 2007 to 2008, he is responsible of the courses of the specialty “Image,
Interaction and Virtual Reality” of the Computer Science department. In
2013, Stéphane Galland obtains a French Accreditation to Supervise Research
with the title “Methodology and tools for the agent-based simulation in virtual
worlds.” Stéphane Galland is one of the authors to the ASPECS methodol-
ogy, the SARL agent-programming language, and the Janus agent platform.
Since 2016, Stéphane Galland is the French Head of the ARFITEC exchange
program named “Energy, Transport, Industry, Challenges for Tomorrow.” In
January 2017, Stéphane Galland integrates the Electronic, Computer Science
and Imagery Laboratory (LE2I) as the Head of the Research team on “Intelli-
gent Environments.”

Nicolas Gaud received his PHD in Computer Science from
the University of Technology of Belfort-Montébliard (UTBM)
in 2007. In 2005, he received his engineering degree in com-
puter science from the UTBM and a MSc in Computer Sci-
ence, Automatic and Manufacturing Systems from the Uni-
veristy of France-Comté (UFC). He is now Associate Professor
at the UTBM and full researcher at the Systems and Trans-

port Laboratory of the research institute on Transport, Energy, and Society
(IRTES-SeT), he is also an external member of the GITIA. His main research
interests deal with the modeling, analysis and simulation of complex systems
using Agent-Oriented Software Engineering (AOSE), Holonic Multiagent Sys-
tems and Multiagent-based simulation. He is also involved in various industrial
projects dealing with the simulation of virtual entities (pedestrian, transporta-
tion systems, etc) in virtual environments.

Sebastian Rodriguez is a Full Professor at the Depart-
ment of Computer Science, Universidad Tecnológica Nacional
(UTN), Argentina. He is also the founder and Head of the
Advanced Informatics Technology Research Group (GITIA)
and an associate researcher of the Systems and Transporta-
tion Laboratory at the University of Technology of Belfort-
Montbéliard (UTBM), France. He received a Computer Engi-

neer degree from Universidad Nacional de Tucumán, a M.Sc. degree in computer
science from the University of Franche-Comté and a Ph.D. degree in computer

28

science of the UTBM.

29

