M. Malik, Heart rate variability: Standards of measurement, physiological interpretation, and clinical use: Task force of the European Society of Cardiology and the North American Society for Pacing and Electrophysiology, Ann. Noninvasive Electrocardiol, vol.1, pp.151-181, 1996.

U. R. Acharya, K. P. Joseph, N. Kannathal, C. M. Lim, and J. S. Suri, Heart rate variability: A review, Med. Biol. Eng. Comput, vol.44, pp.1031-1051, 2006.

H. Kim, E. J. Cheon, and D. S. Bai, Stress and heart rate variability: A meta-analysis and review of the literature, Psychiatry Investig, vol.15, 2018.

R. W. Levenson, The autonomic nervous system and emotion, Emot. Rev, vol.6, pp.100-112, 2014.

E. Gil, M. Orini, and R. Bailón, Photoplethysmography pulse rate variability as a surrogate measurement of heart rate variability during non-stationary conditions, Physiol. Meas, 1271.

M. Z. Poh, D. J. Mcduff, and R. W. Picard, Advancements in noncontact, multiparameter physiological measurements using a webcam, IEEE Trans. Biomed. Eng, vol.58, pp.7-11, 2010.

P. Li, Y. Benezeth, and K. Nakamura, Comparison of Region of Interest Segmentation Methods for Video-Based Heart Rate Measurements, Proceedings of the 2018 IEEE 18th International Conference on Bioinformatics and Bioengineering (BIBE), pp.143-146, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01939138

J. Lázaro, E. Gil, and J. M. Vergara, Pulse rate variability analysis for discrimination of sleep-apnea-related decreases in the amplitude fluctuations of pulse photoplethysmographic signal in children, IEEE J. Biomed. Health Inform, vol.18, pp.240-246, 2013.

D. G. Jang, S. Park, and M. Hahn, A real-time pulse peak detection algorithm for the photoplethysmogram, Int. J. Electron. Electr. Eng, vol.2, pp.45-49, 2014.

S. Akar, S. Kara, and F. Latifoglu, Spectral analysis of photoplethysmographic signals: The importance of preprocessing, Biomed. Signal Process. Control, vol.8, pp.16-22, 2013.

D. Mcduff, S. Gontarek, and R. Picard, Improvements in remote cardiopulmonary measurement using a five band digital camera, IEEE Trans. Biomed. Eng, vol.61, pp.2593-2601, 2014.

D. Mcduff, J. Hernandez, S. Gontarek, and . Cogcam, Contact-free measurement of cognitive stress during computer tasks with a digital camera, Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp.4000-4004, 2016.

D. Mcduff, S. Gontarek, and R. Picard, Remote measurement of cognitive stress via heart rate variability, Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.2957-2960, 2014.

R. Mitsuhashi, K. Iuchi, and T. Goto, Video-Based Stress Level Measurement Using Imaging Photoplethysmography, Proceedings of the 2019 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp.90-95, 2019.

R. Macwan, S. Bobbia, and Y. Benezeth, Periodic variance maximization using generalized eigenvalue decomposition applied to remote photoplethysmography estimation, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp.18-22, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01830541

M. Elgendi, I. Norton, and M. Brearley, Systolic peak detection in acceleration photoplethysmograms measured from emergency responders in tropical conditions, PLoS ONE, vol.8, p.76585, 2013.

R. Belaiche, R. M. Sabour, and C. Migniot, Emotional State Recognition with Micro-expressions and Pulse Rate Variability, Proceedings of the Image Analysis and Processing-ICIAP 2019, pp.26-35, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02354497

O. Gupta, D. Mcduff, and R. Raskar, Real-time physiological measurement and visualization using a synchronized multi-camera system, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp.312-319, 2016.

D. Mcduff, E. Blackford, and J. Estepp, Fusing partial camera signals for noncontact pulse rate variability measurement, IEEE Trans. Biomed. Eng, vol.65, pp.1725-1739, 2017.

M. Fukunishi, D. Mcduff, and N. Tsumura, Improvements in remote video based estimation of heart rate variability using the Welch FFT method, Artif. Life Robot, vol.23, pp.15-22, 2018.

S. Béres, L. Holczer, and L. Hejjel, On the Minimal Adequate Sampling Frequency of the Photoplethysmogram for Pulse Rate Monitoring and Heart Rate Variability Analysis in Mobile and Wearable Technology, Meas. Sci. Rev, vol.19, pp.232-240, 2019.

W. Zong, T. Heldt, and G. B. Moody, An open-source algorithm to detect onset of arterial blood pressure pulses, Comput. Cardiol, pp.259-262, 2003.

P. Li, Y. Benezeth, and K. Nakamura, An Improvement for Video-based Heart Rate Variability Measurement, Proceedings of the 2019 IEEE 4th International Conference on Signal and Image Processing (ICSIP), pp.435-439, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02438311

Z. Zhang, J. M. Girard, and Y. Wu, Multimodal spontaneous emotion corpus for human behavior analysis, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.3438-3446, 2016.

E. Davis, Dlib-ml: A Machine Learning Toolkit, J. Mach. Learn. Res, vol.10, pp.1755-1758, 2009.

C. Conaire, N. E. O;-o'connor, and A. F. Smeaton, Detector adaptation by maximising agreement between independent data sources, Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-6, 2007.