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Abstract For several decades, the camera spatial res-

olution is gradually increasing with the CMOS tech-

nology evolution. The image sensors provide more and

more pixels, generating new constraints for suitable op-

tics. As an alternative, promising solutions propose Su-

per Resolution (SR) techniques to reconstruct high-

resolution images or video without modifying the sen-

sor architecture. However, most of the SR implemen-

tations are far from reaching real-time performance on

a low-budget hardware platform. Moreover, convincing

state-of-the-art studies reveal that artifacts can be ob-

served in highly textured areas of the image. In this

paper, we propose a Local Adaptive Spatial Super Res-

olution (LASSR) method to fix this limitation. LASSR

is a two-step SR method including a machine learning-

based texture analysis and a fast interpolation method
that performs a pixel-by-pixel SR. Multiple evaluations

of our method are also provided using standard image

metrics for quantitative evaluation and also a psycho-

visual assessment for a perceptual evaluation. A first

FPGA-based implementation of the proposed method

is then presented. It enables high-quality 2k to 4k super-

resolution videos to be performed at 16 fps, using only

13% of the FPGA capacity, opening the way to reach

more than 60 fps by executing several parallel instances

of the LASSR code on the FPGA.
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texture analysis · spatial interpolation · real-time

implementation
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1 Introduction

Continuous advancements in imaging technology have

boosted the emergence of cameras featuring smaller

pixels and higher resolution, allowing to capture finer

details. In most applications, high-resolution contents

(i.e. images or video) are desired for better human per-

ception and often required for efficient image analysis

and automatic interpretation. So, the development of

such megapixel sensors has been naturally pulled by

the pressing technological needs of several key mar-

kets such as medical, security or broadcasting. And to-

day, Ultra High Definition (UHD) cameras, able to cap-

ture up to 8k video (8192 x 4320 pixels), are commer-

cially available. Unfortunately, constructing such cam-

eras with high precision optics is a very costly process.

It is one of the most important issues in many real

applications, limiting their use only to specific niche

markets. Moreover, increasing sensor resolution has also

additional limitations on camera performance. It tends

to slow the acquisition framerate, the storage, and the

data processing because of the higher number of pix-

els. Important hardware resources (i.e high-speed in-

terfaces, powerful processor) are required to cope with

this unprecedented bandwidth, making them not com-

pliant with real-time embedded systems constraints.

So, to satisfy the high demand for UHD content, an

alternative and affordable solution is Super Resolution

(SR). It is a set of algorithmic techniques reconstructing

high-resolution images or videos from one or multiple

low-resolution observations of the same scene, thereby

increasing the high-frequency components and remov-

ing the degradation caused by the imaging process of

the low-resolution camera[56]. It relies on off-the-shelf

optical components and lower resolution cameras (LR,

typically < 2k) combined with image processing for up-
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scaling video into higher resolutions (HR, up to 8k).

Since the pioneering works by Tsai and Huang[50], SR

has been an area of very active research[3,39,38], result-

ing in many research papers, each describing a new SR

technique for a specific purpose (see [36]for a taxonomy

covering the different types of SR algorithms). With

the rapid shift of traditional computer vision to deep

learning methods in recent years, deep learning-based

SR models have been actively explored[53]. SR has also

received a significant boost in performance using deep

learning-based methods and often achieves the state-

of-the-art performance[23,28,22,10,49]. Several reasons

can explain that SR has been a spotlighted area for the

research community over the last two decades. First, SR

is a challenging problem because it is a computation-

ally complex and numerically ill-posed problem, leading

to a multiplicity of solutions for a given set of observa-

tion images[12]. Secondly, SR produces video sequences

with more level of details, improving the performance of

computer vision applications, typically in medical imag-

ing, in satellite imaging or surveillance[45,60,55,58]. Fi-

nally, algorithmic SR may be more cost-effective than

a hardware approach because any existing LR imag-

ing system with low-cost optical components can be

re-used[4,40,43].

Historically, the seminal SR algorithms were based

on image processing techniques in the frequency do-

main. For example, Tsai and Huang[50] proposed the

first multiple-image SR algorithm using a discrete Fourier

transform. HR images were built from the relationship

between consecutive images acquired by Landsat satel-

lite, exploiting the relative motion between the LR im-

ages. Other techniques such as discrete cosine trans-

form[44] and wavelet transform methods[6] have also

been proposed. However, despite high computational

efficiency, frequency-domain algorithms have also seri-

ous limitations, limiting their applications. So, nowa-

days, the main trend in SR is the spatial domain us-

ing two different approaches: multi-image (MISR) or

single image (SISR). Multiple image-based algorithms

named “Reconstruction-based SR” assume that LR in-

stances of the same scene are available. MISR methods

overcome the inherent resolution limitation by exploit-

ing the explicit redundancy of information available in

subpixel shifts of LR images. They usually perform a

geometric registration and blur estimation at first to

compensate for the misalignment between the LR im-

ages, and finally, recover details by a fusion step. Iter-

ative back projection (IBP) methods[41] were among

the first methods developed for spatial-based MISR.

Typical other approaches include maximum likelihood

(ML)[27], Maximum A Posteriori (MAP)[18] or Projec-

tion Onto Convex Sets (POCS)[48]. These methods sig-

nificantly counterbalance the disadvantages of frequency-

domain methods but require more computationally in-

tensive operations (i.e. registration and fusion), the ac-

curacy of which directly impacts the quality of the final

result[37]. While MISR relies on the complementary in-

formation available in LR images to build HR images,

SISR uses only one single image for this task. SISR

algorithms named “Example-based SR”[14] or “Image

Hallucination”[2] often use machine learning or deep

learning techniques, trying to hallucinate the missing

information of the LR images[36,58]. The principle is

to learn correspondences between LR and HR images

patches from a database of LR and HR images pairs.

During the HR computation, an LR patch is analyzed,

and the prediction step of the machine learning algo-

rithm recovers its more likely HR version.

Even if state-of-the-art SISR and MISR techniques

appear as efficient alternatives to achieve great success

in SR reconstruction accuracy, they both suffer from

heavy computational cost. Most of the above-mentioned

works on SR mainly focus on the mathematical algo-

rithms behind SR and the ability to overcome issues

such as noise, non-uniform blur, and motion estima-

tion errors to reach high accuracy[4]. Executing these

algorithms at the framerate of the imaging system re-

mains a challenging task for high-performance desktop

computers, and may be unreachable for low-power em-

bedded processors[43]. Some of the literature addresses

the hardware implementation with a parallel acceler-

ation of SR techniques[16]. Focus is made on the de-

sign of highly parallelizable algorithms and dedicated

implementations to try to achieve real-time SR recon-

struction using CPU[42], GPU[21,57] or FPGA[47,30,

25]. Nevertheless, most of these SR implementations

are far from reaching ideal performance as well as scal-

ability or energy efficiency. So, in this paper, inspired

by the above-mentioned state-of-the-art, we propose a

hardware-friendly single image super-resolution method

and its dedicated hardware implementation on an FPGA.

Overall, the contributions of this paper can be summa-

rized as follows:

– We propose LASSR, a “Local Adaptive Spatial Super-

Resolution” method that is compliant with real-

time embedded constraints. LASSR is a two-step

SR method including a machine learning-based tex-

ture analysis and a fast interpolation method that

performs a pixel-by-pixel SR. According to the tex-

ture analysis, an edge enhancement algorithm can

be applied to reveal finer details and better contrast.

– We provide a thorough evaluation of the LASSR

method. The quantitative evaluation relies on widely

used metrics in SR problems (i.e. PSI and SSIM) to

compare the output of SR to the ground truth. Since
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it is known that such metrics may correlate poorly

with human perception, we also provide a Psycho-

Visual Assessment (PVA) in which forty-five partic-

ipants are asked to give scores to assess the image

quality based on their visual perception.

– We design a real-time implementation of the LASSR

method that demonstrates the generation of 4K high-

quality content from 2K sources on an embedded

FPGA board while limiting run-time and hardware

budget.

The remainder of the paper is organized as follows:

Section 2 proposes an analysis of some real-time sin-

gle image super-resolution demonstrating their limita-

tions in the low-frequency textured image regions. Sec-

tion 3 introduces our “Local Adaptive Spatial Super-

Resolution” (LASSR) method which includes a real-

time classification-based texture analysis in the resolu-

tion enhancement process. Performance is evaluated us-

ing a psycho-visual metric. Finally, Section 4 describes

the dedicated hardware FPGA-based implementation

of this method which enables a high image quality to

be maintained while achieving real-time processing on

high spatial resolution images (2K, 4K).

2 Analysis of limitations of some real-time

interpolation-based SR methods

2.1 Interpolation-based SR methods

Sophisticated SR methods are usually not compliant

with hardware limitations. Simpler interpolation-based

methods are then considered for increasing resolution

by a magnification factor of 2, typically in TV applica-

tions with Full-to-Ultra-High-Definition conversion or

4K-to-8K conversion[24]. However, a basic interpola-

tion of a single image is unable to recover the high-

frequency components of the image and can not be

considered as an SR technique[39]. So interpolation-

based SR techniques frequently adopt a two-step pro-

cess, starting with an interpolation step to match the

target resolution, followed by a quality enhancement

step to add high-frequency information in the HR im-

age. Such methods, sometimes called “Super interpo-

lation”, intelligently incorporate both the simplicity of

interpolation and the quality enhancement capability of

SR. In [8], the proposed method utilizes edge-orientation-

based pre-learned kernels. It requires an off-line train-

ing phase in which LR patches are clustered based on

their edge orientations. During the on-line up-scaling

phase, HR images patches are generated by applying

a linear mapping function based on the edge orienta-

tion of the corresponding LR input patches. In [24],

this method is improved to fit with the hardware re-

quirements of an FPGA. The resulting implementation

reconstructs 4K UHD HR images in real-time. A similar

approach, described in [20] combines a neural network

and an interpolation-based method. It crops each frame

into blocks, measures their total variation values, and

dispatches them accordingly to the neural network or

to the interpolation module for upscaling. The hard-

ware FPGA implementation achieves real-time for a

Full-HD-to-UHD conversion.

All the above-mentioned super-interpolation tech-

niques are example-based SR working on image patches

or blocks to generate their corresponding SR version.

The missing high-resolution information is assumed to

be learned during the training phase from the LR/HR

pairs in the database. Not only it is not guaranteed

that the reconstructed HR patch provides true details,

but also the training phase is a long process requiring

a large set of images.

On the contrary, Gohshi[17] proposes an SR method

without the use of any neural network technique. He

describes a real-time method for increasing image spa-

tial resolution, suitable for FPGA implementation. The

principle of this method is to add to the interpolated

image a proportion of high frequencies computed us-

ing a Laplacian operator, as depicted in Fig. 1, where

the output named GFI (i.e Gohshi Filtered Image) is a

two-times (2X) up-scaled image in both horizontal and

vertical directions.

Fig. 1 Gohshi’s method

The first block is a standard interpolation based on

the Lanczos method[29] allowing to upscale the original

image by factor 2. The interpolation step is followed by

a high pass filter (HPF) based on a 5x5 Laplacian, then

the result is amplified using a nonlinear function (NLF)

(cube value of the Laplacian). A limiter ensures that

the output value of the NLF is in the range [−255, 255].

Then, the final merging between the initial interpolated

image and the computed high frequencies is performed

using a weighted addition.

The method is powerful and provides high-quality

SR images. Nevertheless, significant artifacts appear in

some “smooth” regions, i.e. the low spatial frequencies

regions, as depicted in Fig. 2, in which the edges are well

enhanced in the area defined by rectangle 1 whereas

noise is highly visible in rectangle 2.
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Fig. 2 Differences between a Lanczos Interpolation (left) and
Gohshi’s method (right) on both areas 1,2

Another limitation is illustrated in Fig. 3. Gohshi’s

process increases and may saturate the luminance in the

“smooth” areas, losing details and original information

of the scene. Therefore, the human visual perception of

the image is significantly impacted, particularly in the

case of high-resolution video broadcasting and screen-

ing. In smooth areas, a simple Lanczos interpolation

does not saturate as well as not generate information

loss.

Fig. 3 Differences between an Lanczos Interpolation (left)
and Gohshi’s method (right). The resulting image is satu-
rated, details are lost in high levels of luminance regions

2.2 Evaluation of the quality of interpolation-based

SR methods

To quantify the impact of the information loss and the

artifacts in smooth regions, we compared the Gohshi’s

performance with a standard Lanczos interpolation, ac-

cording to the level of the image spatial frequencies. We

built a data set S1 of 350 patches P manually extracted

from 35 pictures representing various scenes, includ-

ing several landscapes and studio portraits (8k pictures

captured with a camera Nikon D800). Each patch has

a 128x128-pixel size, and has been annotated by an hu-

man expert by using a label yi = {LF,MF,HF} where

LF, MF, and HF are respectively the label for texture

of low, medium and high frequencies. Thus, the set S1

is defined as follow: S1 = {Pi, yi}350i=1. Some samples are

presented in Fig. 4.

For each patch, three criteria have been evaluated,

quantifying the intrinsic quality of the image: the Struc-

Fig. 4 Example from the data set S sorted by texture , up
to bottom : 1st row : high frequencies 2nd row: medium fre-
quencies, 3rd row : low frequencies

tural SIMilarity[52] (SSIM), the Perceptual Sharpness

Index[13] (PSI), and a Psycho-Visual Assessment[31]

(PVA). SSIM is a well-known metric correlated with

the quality perception of the human visual system, used

to measure the similarity between two images. SSIM

models the image distortion as a combination of loss of

three factors: the luminance, the contrast, and the cor-

relation. SSIM is a full reference metric that compares

the processed SR image to the ground truth SR image.

PSI is a no-reference metric, based on a statistical

analysis of local edge gradients. This method takes into

account human visual system properties: it correlates

highly with human perception and exhibits low com-

putational complexity. Both values of SSIM and PSI

are close to 1 when the image enhancement is of good

quality, and close to 0 in the opposite case.

Psycho-Visual Assessment (PVA) consists of the use

of human observers who score image quality during

experiments. Contrary to objective measures such as

SSIM or PSI, PVA provides a subjective measure of the

perceptual quality of images. In our studies, the partic-

ipants have been selected with good skills in computer

vision because we assumed that experts in computer

vision are the best panels for evaluating the quality of
SR images. Participants were informed about the main

goal of the study (i.e. evaluate the quality of recon-

structed high-resolution images) but they were unaware

of the different algorithms used to build the SR images.

Following the expertise criterion, the recruitment pro-

cess has been limited only to academic researchers and

PhD students from our laboratory and also to students

from the local engineering school in electrical engineer-

ing and computer science. For each of the two studies,

flyers were posted, and messages have been sent to mail-

ing lists of the laboratory and the engineering school to

recruit the different participants. For this first evalua-

tion, twenty participants were recruited. They had to

evaluate 350 pairs of images produced with the Lanc-

zos Interpolated Image (LII) and the Gohshi Filtered

Image (GFI) algorithms. The duration of the experi-

ment was about 30 to 40 minutes for each participant.

For each trial, the LII and GFI images were randomly

displayed side by side on the screen. Moreover, the

LF, MF and HF frequencies were also randomly dis-
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tributed to avoid any bias. For each pair of SR images,

participants were asked to select the image that corre-

sponds to the highest perceived quality. The response

time and the ranking were recorded. The response time

has been systematically used to verify that the par-

ticipants spent enough time before ranking the images.

For this first study, no outliers were identified and elim-

inated. The analysis of ranking was then performed on

all the twenty participants’ data by computing the per-

centage of LII and GFI images classified respectively in

the LF, MF and HF categories, as depicted in Table 1.

Table 1 Comparison of Gohshi Filtered Image (GFI) and
Lanczos Interpolated Image (LII)

HF MF LF
PSI 0.25 0.23 0.48

GFI SSIM 0.89 0.88 0.93
PVA(%) 76.48 63.05 40.54

PSI 0.27 0.20 0.47
LII SSIM 0.91 0.91 0.94

PVA(%) 23.52 36.95 59.46

As shown in Table1, the difference between LII and

GFI is not significant with the SSIM and PSI assess-

ments. However, quality metrics are originally designed

to mainly account for image signal and noise rather

than human visual perception. Several authors[46,35,

61] highlight that full-reference metrics such as SSIM

fail to match the visual perception of human subjects

well for SR performance evaluation.

Regarding PVA, the GFI results outperform the LII

for medium to high frequencies (MF and HF). How-

ever, the difference between MF and HF is not sig-

nificant. Therefore, it is possible to merge these two

classes into only one class named MHF for the follow-

ing experiments. For low frequencies (LF), the best en-

hancement is obtained using the Lanczos interpolation

method. Therefore, this evaluation demonstrates that

the image texture impacts the quality of the Gohshi’s

results. As expected, this approach is efficient for the

highly textured part of the image. Nevertheless, it adds

noise in the low textured part where a standard Lanczos

interpolation is preferable. Moreover, Gohshi’s method

increases the global luminance of the image.

Based on this observation, we propose a hybrid ap-

proach combining Gohshi and Lanczos methods. This

new approach is named LASSR for Local Adaptive Spa-

tial Super-Resolution. LASSR uses a local texture anal-

ysis and classification to automatically select the appro-

priate algorithm. More precisely, each pixel is processed

using one of the two methods according to a texture im-

age analysis. LASSR is compliant with real-time con-

straints and can be implemented on an embedded vision

system.

3 LASSR Method

The LASSR method, depicted in Fig. 5, can be viewed

as an upgrade of the Gohshi’s filter, adding two process-

ing steps: a Texture Classification (TC) and a Merging

step, designed respectively to overcome the limitations

previously highlighted: noise in low-frequency areas and

saturation of the luminance.

Fig. 5 LASSR method

3.1 Texture Classification

The Texture Classification step is based on a standard

machine learning workflow, including the definition of a

training dataset, features extraction, training, and final

pixel-wise classification (as seen in Fig. 6). The decision

phase enables the texture analysis to be performed on-

line based on the model generated during the off-line

learning step. The output of the classifier (pixel class)

is a binary information (LF or MHF) and can be used

to select either GFI or LII in the merging operation.

Fig. 6 Machine learning based texture analysis: off-line
learning, on-line classification

3.1.1 Training DataSet

A learning phase is required and is performed off-line,

based on a set of patches annotated by a human ex-
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pert, according to their texture. Example of patches

from the two different classes are shown in Fig. 7 where

high frequencies patches are represented on the top row,

and low frequencies patches on the bottom row. Thirty

five 8k photographies have been used to extract a to-

tal number of 2000 patches with a distribution of 1000

patches per class. Thus, the labelled dataset is defined

by S2 = {Pi, yi}2000i=1 with yi = {LF,MHF}.

Fig. 7 Sample of textured patches: High frequencies(MHF)
patches (1st row), low frequencies(LF) patches (2nd)

3.1.2 Classification methods

Numerous methods are suitable for embedded classi-

fication, such as Neural Networks[59], Support Vector

Machine[51], Boosting[15], Random Forest[5], k-NN[9],

etc. Here, a very fast decision step is required, since

the decision frequency is the pixel frequency. We de-

veloped in previous studies some specific FPGA-based

hardware accelerators for SVM and Boosting[33]. Dur-

ing this study, we developed a tool allowing the user

to find automatically the appropriate trade-off between

classification performance and hardware implementa-

tion cost for SVM and Boosting. This tool is based

on the LIBSVM library[7] and an adaptive boosting

method for the estimation of the SVM and boosting

parameters. For SVM, this tool uses a Radial Basis

Function (RBF) kernel (K) of parameter σ with the

main objective to automatically optimize the classifica-

tion rate. For this purpose, the SVM decision function

providing the class C of a feature vector F of dimension

d is presented in Eq. 1.

C(F ) = sgn

(
Nv∑
i=1

yiεiK(Si, F ) + b

)
(1)

where εi are the Lagrange coefficients, and b a con-

stant value obtained during the optimization process.

The separating plane is constructed from those Nv in-

put vectors, for which εi 6= 0. These vectors Si, i =

1, ..., Nv, of label yi ∈ {−1,+1}, are support vectors

and reside on the boundary margin.

For Boosting, the basic idea of this method is to

build a “strong” classifier from “weak” ones, focusing

at each iteration on misclassified samples. The resulting

Boosting decision function providing the class C of a

feature vector F is presented in Eq. 2.

C(F ) = sgn

(
T∑

t=1

λtht (F )

)
(2)

Where both λt and ht (F ) are to be acquired by the

training boosting procedure. ht is a threshold operator

applied to k component of the F vector. The threshold

value and the k values are also determined during the

training process. They are considered as constant values

during the real-time decision step, therefore they can be

integrated into the architecture. In this case, the output

Ci ∈ {0, 1} corresponds respectively to the classes MHF

and LF.

Both for SVM and Boosting, our tool automatically

estimates the classification global error, the FPGA re-

sources and generates the SVM and Boosting classifi-

cation model in various formats (C++, VHDL, ROM

configuration file). Specifically, for SVM, an approxima-

tion of the decision boundary is described automatically

in VHDL using a combination of hyper-rectangles. In

case of a 2D feature vector, the ROM file containing

the decision function, compatible with Xilinx software,

is automatically generated.

For Boosting, the VHDL decision function is auto-

matically generated, as well as the C++ header con-

taining the definition of all constant values of the de-

cision function (thresholds values of ht, polarity asso-

ciated with these thresholds, and λt coefficients). The

C++ header can then easily be included in the High-

Level Synthesis description of the decision function and

implemented using, for instance, Vivado HLS.

Despite the powerful of SVM training and the low-

complexity of the decision algorithm, the hardware im-

plementation of the decision function is still hardware

resource consuming, due to the RBF kernel K and the

high number of support vectors. If the feature vector

dimension d is lower than 4, it is possible to discretize

the feature space and store the whole decision in an

embedded FPGA memory configured as a ROM. For

example, if d = 2, the ROM contains the decision func-

tion in a 256x256 feature space. If d > 4, it can be more

efficient to implement the Boosting decision function.

3.1.3 Feature extraction for texture analysis

A large number of features are available in the litera-

ture to quantify the local frequencies around the pixel

p(i, j) to be classified. Classical approaches are gener-

ally based on the Fourier Transform[32], the Wavelet

Transform[1], the Haralick features[19], or standard statis-

tics.

Due to the hardware implementation constraints,

we defined a set of features based on standard statistics



An FPGA-based design for real-time Super-Resolution Reconstruction 7

Fig. 8 Feature extraction based on Sobel Gradient

computed from the Sobel gradient image SGI, which is

a high-pass filter. A neighborhood or sub-window N1 of

size n× n centered around each pixel p(i, j) to be clas-

sified is defined, where (i, j) are the coordinates of the

considered pixel. In the following experiments, the im-

pact of N1 size has been considered as larger neighbor-

hoods enable larger texture information to be captured.

The mean X of SGI and the variance σ2 of SGI are

computed in N1. A second sub-window N2 of size 3× 3

is defined in order to capture local texture information.

The nine gradient values in N2 are used as sub feature

vector component named G2. Finally, The mean X2 of

SGI is computed in N2. The resulting feature vector is

F(i, j) =
{
X,σ2,G2, X2

}
.

3.1.4 Classification performance and feature selection

To choose the best classification method, we had to find

the best trade-off between global classification error and

hardware resources (complexity, FPGA resources uti-

lization). For this purpose, we studied the impact of

the parameter n on SVM and Boosting performance

with n = 4, 8, 16, 32, 64. The dimension of the initial

set of features F(i, j) is d = 12 and then is reduced

using the boosting ability so select discriminative fea-

tures. Results are presented in Fig. 9. Differences be-

tween SVM and Boosting are not significant: Boosting

obtains slightly better scores for n = 8 and n = 16

while SVM lightly outperforms for the other values of n

. The best trade-off between classification performance

and complexity is then the implementation of the boost-

ing method. Moreover, a powerful intrinsic property of

boosting is to perform feature selection automatically

during the training step. Finally, boosting algorithm se-

lection removed all feature components except σ2. The

final feature vector is F(i, j) =
{
σ2
}

. This allows to

implement the decision function with a single iteration

of Eq. 2 or using a simple 256x1 bit ROM. The hard-

ware resource utilization depends mainly on the archi-

tecture of the filter needed for feature extraction (see

Section 4.3 for a detailed study).

We provide in Fig. 10-a an example of texture clas-

sification for a portrait. High Frequencies pixels are de-

picted in white and low frequencies in black. As ex-

Fig. 9 Global classification error and FPGA resources evolu-
tion for SVM and Boosting method with different sub-window
size.

pected, hairs, eyes, mouth or nose contours, will be

sharpened, whereas background or “smooth” skin will

remain unchanged. The same statement is observed with

low frequencies areas of Fig. 10-b (London) where smooth

areas (sky and cloud) are considered as no-textured ar-

eas, and all the details in regions with textures like

tower’s stones will be enhanced. In Fig. 10-c (Vienna),

near all the wall details will be enhanced.

(a)

(b)

(c)

Fig. 10 (a) Original image “Portrait”(left) and Texture
Classification (right), (b) Original image “London” (left) and
Texture Classification (right), (c) Original image “Vienna”
(left) and Texture Classification (right)
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3.2 Merging

The role of this step is to merge the Lanczos Interpo-

lated Image LII with the Gohshi filtered image GFI ac-

cording to the texture class y. Since luminance of GFI

and LII are slightly different, it is necessary to per-

form a local equalization, taking into account the local

mean of luminance of both images. The merged image

is computed as follows (Eq. 4):

LASSR(i, j) =

{
LII(i, j)× (1− y(i, j))+

GFIeq(i, j)× y(i, j)
(3)

where (i, j) are the coordinates of the considered

pixel, LII(i, j) is the luminance value of interpolated

image, and the GFIeq(i, j) is the equalized luminance of

the Gohshi’s image, computed using the mean of their

respective luminance in 5× 5 neighborhoods:

GFIeq(i, j) = GFI(i, j) + (XLII(i, j)−XGFI(i, j)) (4)

where

XLII(i, j) =
1

25

2+i∑
k=i−2

2+j∑
l=j−2

LII(k, l) (5)

and

XGFI(i, j) =
1

25

2+i∑
k=i−2

2+j∑
l=j−2

GFI(k, l) (6)

Examples of merging with and without local equal-

ization are presented in Fig. 11. Since the luminance of

GFI (see Fig. 11-a) is higher and sometimes saturated

compared to the LII (see Fig. 11-b), an halo appears

around areas classified as textured (see Fig. 11-c). These

artifacts are eliminated by the local luminance equal-

ization (see Fig. 11-d).

3.3 LASSR evaluation

3.3.1 Experimental setup and dataset

To validate the LASSR method, we also conducted ex-

periments using a Psycho-Visual Assessment (PVA) as

in [46]. For this second PVA evaluation, twenty-nine

new participants were recruited according to the inclu-

sion criterion. None of them had participated in the

first study described into 2.2. After analysis of the re-

sponse times, the data of four participants have been

eliminated and the PVA ranking results have been eval-

uated using the twenty-five remaining participants. The

(a) (b)

(c) (d)

Fig. 11 Merging with and without local equalization: (a)
GFI with high or saturated values on the sky, (b) LII with
lower values, (c) apparition of halo around the trees after
merging GFI and LII, (d) no halo on merged image after
local luminance equalization

main goal of this second study was to evaluate the qual-

ity of the proposed LASSR algorithm compared with

GFI and LII methods. The participants were informed

about this goal but they were unaware of the different

algorithms used to build the SR images and they were

also unaware of the detailed purpose of the experiment

(i.e. compare the quality of the proposed LASSR al-

gorithm versus other algorithms). For each trial, they

were shown the ground truth image on the upper left

of the screen along with the SR images (obtained with

LASSR, GFI and LII algorithms) randomly displayed

on the three other quadrants of the screen. For this pur-

pose, we used a desktop computer with its calibrated

4K screen that displayed simultaneously the 4 images

at a 1024x1024 spatial resolution. The participants were

asked to rank the three SR images from higher to lower

perceived quality, by clicking first on the image featur-

ing the higher quality, and next on the second-ranked

image. After the selection of the two first images, the

last one was automatically ranked third. For ranking

the images, participants have received the following in-

structions:

– A high-quality SR image must provide a high level

of precise details;

– The color and luminance of a high-quality SR image

must match the ground truth image as precisely as

possible.

We built a dataset S2 of 150 different images with a

1024x1024-pixel resolution extracted from 8k-resolution
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images. The dataset includes various scenes (urban and

scenic landscapes, portraits, animals, etc.) with differ-

ent levels of details. Image samples from S2 are depicted

in Fig. 12. The participants had to evaluate all the 150

images of the dataset during a test session. The average

evaluation time was around 22 minutes to rank the full

dataset.

Fig. 12 Example of 1024 × 1024 sub-images from S2 used
for PVA

3.3.2 Objective and subjective evaluation of the quality

of LASSR images

The LASSR method has been implemented and evalu-

ated in Matlab. Three example images from the dataset

S2 are presented in Fig. 13: a portrait, an urban land-

scape, and a forest. The first row is the ground truth

while the subsequent rows display the SR images ob-

tained respectively with LII, GFI and LASSR meth-

ods. For each image, we also provide a detailed zoom

of a specific region to highlight the details generated by

the different algorithms. The global luminance, as well

as the colors of the LASSR resulting images, is quite

similar to the ground truth images. Furthermore, there

are no significant local luminance artifacts between tex-

tured and no-textured areas (for example in hair and

skin details of the portrait image) validating the local

luminance equalization of the GFI processed before the

merging operation.

Table 2 SSIM and PSI metrics for GFI, LII and LASSR

GFI LII LASSR

SSIM 0.79 0.92 0.87

PSI 0.31 0.25 0.30

Concerning the objective metrics, SSIM and PSI

have been evaluated for each image of the dataset and

their mean values are shown in Table 2. The values of

SSIM and PSI are not significantly different for GFI,

LII, and LASSR. For SSIM, LASSR gets a score of

0.87 close to the higher value (0.92) obtained with LII.

For PSI, LASSR obtains performance (0.30) similar to

GFI (0.31). One common feature of the objective image

quality metrics is that they emphasize the importance

of distortions on the image structure. Based on the con-

sensus that the structure is dominant in the human

visual perception, quality metrics have been mainly de-

signed to efficiently detect the presence of severe image

distortions but they are unable to evaluate the subtle

differences present in the SR images[35] Today, most of

the SR algorithms succeed to accurately reproduce the

image structure. The main difference between the SR

algorithms is their capacity to precisely generate image

details. Since metrics such as SSIM or PSI are unable to

evaluate image details with enough precision, they can

not reflect image quality well and are not best suited

for SR[54].

Table 3 presents the PVA results obtained with a

panel of 25 participants. Contrary to quality metrics,

the PVA results highlight a significant difference be-

tween the three algorithms. Table 3 indicates that LASSR

is ranked as the best method to improve image resolu-

tion while preserving a good level of details. With a

score of 40%, LASSR outperforms GFI (32%) and LII

(28%). By combining the ranks 1 and 2, LASSR obtains

a huge score of 84%, compared to 61% for GFI and 55%

for LII. Finally, LASSR is only considered as the worst

method in 16% of cases, a very low score compared to

39% for GFI and 45% for LII.

To summarize, the quality metrics SSIM and PSI are

unable to significantly exhibit the best SR method but

the PVA rankings experimentally validate the visual

quality of the proposed method LASSR for generating

SR images with a high level of details.

Table 3 PVA ranking results for GFI, LII and LASSR

Rank GFI LII LASSR

1st 32% 28% 40%

2nd 29% 27% 44%

3rd 39% 45% 16%

4 Hardware implementation

The LASSR’s method is efficient in terms of visual per-

ception as demonstrated in Section 3. Therefore, to
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(a)

(b)

(c)

(d)

Fig. 13 Visual comparison for three ground truth patches with a 1024x1024-pixel resolution cropped from 8k images (a) with
processed SR images obtained with Lanczos Interpolation LII (b), Goshi’s method GFI (c) and proposed method LASSR (d).
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Fig. 14 Block diagram of the LASSR method architecture highlighting the multiple use of 2-D filter, gradient, mean X̄ and
variance σ2 computation, local luminance equalization

achieve our goal, we propose a specific hardware de-

scription to reach real-time processing on an FPGA

target. As a proof of concept, a demonstrator has been

developed on a Xilinx VC707 development board in-

cluding a Virtex7 FPGA.

The hardware description of LASSR has been man-

ually developed in VHDL and Verilog to have better

control on the architecture design and optimizes the

performance. Nevertheless, to limit the demonstrator

development time, a rapid prototyping strategy based

on Matlab/Simulink has been considered. This proto-

typing method requires two steps for a demonstrator

validation:

1. A HDL Co-Simulation that interfaces the Matlab

workspace with the HDL simulator (ModelSim) with

the objective to make a Hardware/Software valida-

tion. It consists of simulating the entire HDL core

with ModelSim. For this purpose, Matlab/Simulink

enables a high level of abstraction description of the

data transfer to be achieved: input images are sent

by Simulink to ModelSim and simulation outputs

are saved in the Matlab workspace using an internal

socket that performs block by block communication.

2. A Co-Design method, named “FPGA-in-the-loop”

(FIL) in Simulink, to interface the Matlab workspace

with the Xilinx VC707 board. Simulink uses Vivado

from Xilinx to generate the FPGA configuration file

and to program the FPGA board. This method gives

access to the FPGA resource utilization and the

maximum clock frequency. The FPGA-in-the-loop

methodology also automatically provides the com-

munication channel (i.e. an Ethernet connection in

our case) for sending and receiving data between

Simulink and the FPGA board.

Consequently, using FPGA-in-the-loop simulation, most

of the development time has been focused on the design

of the LASSR IP core architecture. The validation of

the LASSR demonstrator (in simulation and on-board)

has been simplified and significantly accelerated by the

Simulink development environment that automatically

generates the data interfaces between the validation en-

vironment and the FPGA board.

The proposed architecture for a hardware imple-

mentation of the LASSR method is depicted in Fig. 14.

This architecture details the three main steps previ-

ously described in Fig. 5: the Gohshi’s filter, the tex-

ture classification, and the final merging. These three

steps, based on a pipeline architecture, are processed

simultaneously increasing the task’s parallelism. More-

over, based on the fact that multiple 2-D filtering is

required in these three main blocks, we developed a

generic HDL description which enables the kernel size

and coefficients to be customized, before the HW gener-

ation, according to the user requirements. The generic

model description enables high performance, in s of pro-

cessing and resulting pixel’s throughput, to be guaran-

teed. Indeed, for any kernel size, the proposed design en-

ables the pixel’s neighborhood to be processed at each

clock cycle.

The generic filter model including the Generic Cache

Memory (GCM) and the Generic Kernel Processor (GKP)

are detailed in Section 4.1. All blocks are detailed in the

following sections.

4.1 Generic filter model

As different 2-D filters with different kernel parame-

ters (size, coefficients) are requested in the hardware

description of the LASSR method, we designed a cus-

tomizable 2-D filter. This generic filter regroups two

generic components: a Generic Cache Memory (GCM)

and a Generic Kernel Processor (GKP). GCMs are rep-

resented with blue blocks in the global implementation

(Fig. 14) and GKPs with yellow blocks. For each block,

the kernel size is specified in brackets.
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The Generic Cache Memory (GCM) guarantees

parallel access to all the pixels of a neighborhood. The

architecture overview of this component is depicted in

Fig. 15.

Fig. 15 Description of Generic Cache Memory implementa-
tion

According to the user’s configuration, the cache mem-

ory enables a W ×H pixel neighborhood (where W and

H are respectively its width and its height) to be ac-

cessible in only a clock cycle. The neighborhood size,

as well as the input pixel dynamic (Dpix), are fixed

according to the user’s constraints before the core syn-

thesis. According to the user’s customization (i.e. the

kernel size and the image width), the number of delay

lines (FIFO) and the Shift registers (S) are automati-

cally fixed and synthesized. Each delay line is generated

using the FPGA’s embedded memory blocks and the

memory’s depth is fixed according to the image width.

The core concatenates the pixels of the neighborhood

in one vector (V ec(W×H)) and enables all kernel pix-

els to be accessible in one clock cycle. The V ec(W×H)

dynamic is automatically fixed at W ×H ×Dpix bits.

The Generic Kernel Processor (GKP) has been

described to be specifically bounded to the GCM (see

Fig. 16). The generic description of GKP enables three

processing to be considered. Indeed, the user can select

either the mean X̄ or the mean of the squared X̄2 or

a 2-D convolution using the configurable kernel. Each

processing is performed on the considered pixel neigh-

borhood.

According to the user’s configuration, the appropri-

ated number of multipliers is fixed for the first pipeline

stage of the generated architecture. For a W ×H neigh-

borhood, the GKP generates 2max(W,H) signed multi-

pliers. Each coefficient is bound to a multiplier and a

pixel neighborhood. The coefficient precision (number

of bits) is a parameter, meanwhile, all internal signal

Fig. 16 Description of Generic Kernel Processor implemen-
tation processing a 5 × 5 2-D convolution

precision is automatically fixed according to the se-

lected user’s configuration. The core generates ceil(log2(W×
H)) stages of the signed adders. An optional normaliza-

tion is included to control the GKP’s output precision.

4.2 Gohshi Filter (GF)

Gohshi’s method requires a classical interpolation, a

high pass filter, a nonlinear function, and a final adder.

The proposed architecture, depicted in Fig. 17, enables

the implementation of this method and each block’s

structure is detailed below.

Fig. 17 Gohshi Filter implementation

Interpolation: We implemented the Lanczos’s bi-linear

technique as the interpolation filter as a trade-off be-

tween complexity and quality. This interpolation core[26]

allows up and down scaling.

High Pass Filter: The 5×5 Laplacian edge detector

is performed using configured GCM and GKP. The 5×
5 GKP performs convolution function using 25 signed

coefficients which have been fixed for optimizing the

hardware implementation cost. The values are defined

in Eq. 7.
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X =
1

256
×

 0 −3 −5 −3 0
−3 −15 −25 −15 −3
−5 −25 +214 −25 −5
−3 −15 −25 −15 −3
0 −3 −5 −3 0

 (7)

Non Linear Function (NLF) The non linear func-

tion applied is a simple cubic function, implemented

by cascading two multipliers, the output PixelNLF is

signed.

Limiter & Adder (LMT & ADD): The limiter

bounds PixelNLF to the output PixelLMT range from [-

255,255]. The role of the Add block is to merge PixelLMT

(value in [−255, 255]) with the corresponding interpo-

lated pixel PixelInt (value in [0, 255]). The cubic func-

tion is monotonic for positive values and increases fast.

The resulting pixel value is often saturated.

4.3 Texture Classification

As mentioned in Section 3.1.4, the Texture Classifica-

tion block aims to classify the local texture. The process

is pipelined in several steps: a Sobel gradient is per-

formed, and then the features F (i, j) (variance in N1

neighborhood) are extracted from the Gradient. The fi-

nal step corresponds to the decision phase (single boost-

ing iteration).

Fig. 18 TC architecture block

The 3× 3 Sobel gradient is performed using config-

ured GCM and two GKPs. The variance is performed

on the gradient resulting image relying on Eq. 8.

σ2 =

∑N
i=1(x2i )− (

∑N
i=1 xi)

2/N)

N
,N = n× n. (8)

Based on an architecture that has been originally

proposed in previous studies[34,11], an implementation

is proposed using our generic filter model. As discussed

in 3.1.4, the size n of the kernel used to compute vari-

ance does impact the global classification error. There-

fore, the genericity of the proposed architecture pro-

vides flexibility and enables the classification perfor-

mance to be adjusted according to the hardware re-

sources available onto the FPGA target. Therefore, a

n × n GCM bounded to two GKPs is generated. One

GKP is configured to process the sum of GCM pixels,

and the other one is configured to process the sum of

the squared pixel (Fig. 19).

Fig. 19 Computing the variance using GKP and GCM.

This filter is not only easy to use and to configure

but also very fast due to the high level of parallelism.

However, it may be hardware resource-consuming when

n increases. So, the impact of n on classification perfor-

mance and hardware resources is presented in Fig. 20

using a Xilinx Virtex-7 as the target. The classifica-

tion error is acceptable (lower than 10%) from n = 8

and decreases when n increases. However, the propor-

tion of used hardware resources is acceptable (according

to our application constraints) for n = 8 and n = 16

which require respectively 2.8% and 10.5% of the se-

lected FPGA resources. We choose n = 16 as the best

trade-off between global classification error and hard-

ware resources.

Fig. 20 Global Boosting classification error and FPGA re-
sources evolution depending on sub-window size.
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4.4 Local Merging

This final step of the LASSR method merges the GFI

and the LII according to their local texture as depicted

in Fig. 21. Since the Gohshi’s method increases the lu-

minance, a 5 × 5 local luminance equalization is per-

formed (following Eq. 3 previously described in Sec-

tion 3.2). The luminance equalization requires to com-

pute two local means by connecting a 5 × 5 GCM to

a GKP configured to sum pixels of the neighborhood.

The final merging is performed using a simple 2-input

multiplexer (with class y as selection input).

Fig. 21 Local Merging principle block

4.5 Implementation results

The proposed LASSR method has been implemented

through the use of Vivado 2019.2. It is mapped to a Xil-

inx Virtex-7 xc7vx485tffg1761-2. As indicated in Table

4, LASSR HW uses 15245 Slices LUT, 28 BRAMs, and

315 DSP blocks, representing only 5.02% of total Slices

LUT, 2.72% of total BRAMs, and 11.25% of total DSP

of the targeted Virtex-7 device.

Among the 3 modules, the Texture Classification re-

quires the largest number of Slices LUT (11450/15245,

i.e 75%) that corresponds to about 4% of the FPGA

LUT resources and the largest number of DSP blocks

(275/315, i.e 87%) that corresponds to about 10% of

the FPGA DSP resources. An upcoming study plans

to limit the complexity of the Texture Classification by

reducing the size of the sliding sub-window required for

the estimation of the SVM parameters while preserving

a low global error.

With an operating frequency of 142.85MHz, the re-

sulting implementation supports high quality 4K SR

videos from 2K at 16 fps. These results lead to two

potential scenarios. First, a lower budget FPGA could

efficiently replace the Xilinx Virtex-7 xc7vx485tffg1761-

2 and still reach the same performance. The second

option is to increase the output framerate by dupli-

cating the LASSR core on the current FPGA device,

and executing each instance in parallel on independent

blocks of the input source. Since the current HW pro-

totype consumes few hardware resources, we decide to

implement four parallel instances of LASSR (named

LASSR4), each of them processing a quarter of the

input image. As expected, the resulting LASSR4 im-

plementation is 4 times faster and reaches 4K SR at

68 fps. It consumes 60285 Slices LUT, 88 BRAMs, and

1260 DSP blocks, representing 19.86% of total Slices

LUT, 8.54% of total BRAMs, and 45% of total DSP in

the targeted Virtex-7 device.

Table 4 FPGA utilization summary of Super Resolution,
Texture Classification & Local Merging

Hardware
Slices LUT BRAMs

DSP
Resources blocks

Super
1546 6 38

Resolution
Texture

11450 10.5 275
Classification

Local
2249 11.5 2

Merging

Global 15245 28 315
Utilization (5.02%) (2.72%) (11.25%)

Table 5 compares our two LASSR implementations

to state-of-the-art HW real-time implementations of Super-

Resolution on FGPA. Two of them [30,25] are CNN-

based methods while the third one implements an iter-

ative algorithm [47]. Seyid et al. [47] presented a real-

time HW implementation of SR using an iterative back-

projection method, that can reconstruct 512x512 im-

ages from a set of lower resolutions (up to 20 images)

at 25 fps. The FPGA utilization scales with the num-

ber of input images and with the number of iterations of

the algorithm. Manabe et al. [30] proposed a real-time

super-resolution system for moving images using a con-

volutional neural network. They applied horizontal and

vertical flips to network input images instead of com-

monly used pre-enlargement techniques. This method

performed super-resolution from 960x540 pixels to 1920x1080

pixels at 48fps. Yongwoo et al. [25] proposed an FPGA

implementation able to generate 4K images at 60fps,

with the better visual quality compared to other CNN-

based SR methods. To cope with the FPGA constraints,

their method used a limited number of convolutional fil-

ter parameters by incorporating depth-wise separable

convolutions with a residual connection.

Compared to the Iterative Back Projection, the LASSR

method can process larger input data (1920x1080 vs

256x256) for a comparable framerate (16 fps vs 25 fps)
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with a straightforward implementation of LASSR. With

a more sophisticated and more efficient implementation

based on four parallel instances, LASSR4 reaches the

same level of performance (4K at 67 fps) of the best

state-of-the-art CNN-based SR techniques. Moreover,

LASSR4 consumes fewer logic resources because CNNs

are known to require many arithmetic operations. For

example, about 50% of LUT and 100% DSP are used

in [30,25] while LASSR4 requires less than half the re-

sources of the CNN methods (i.e. 20% of LUT and 45%

of DSP).

5 Conclusion and Future work

In this paper, we have proposed a new method to per-

form real-time image super-resolution even for high-

resolution input images. Moreover, as an improvement

of real-time state-of-art methods, the proposed solution

includes a classification-based texture analysis. This step

enables to process differently the low-frequency texture

regions, limiting the noise increasing. According to the

texture analysis, an edge enhancement algorithm is ap-

plied to reveal finer details and better contrast. The

process has been validated using a PVA metric and a

panel of forty-five participants. We have designed a real-

time implementation of our SR method that demon-

strates the generation of 4K high-quality content from

2K sources on an embedded FPGA board while limiting

run-time and hardware resources. This system allows

producing high-quality 4k SR videos from 2k videos at

16 fps. Since less than 20% of the FPGA hardware re-

sources were used for a single-core implementation, we

have also proposed and implemented an extended and

optimized version reaching 67 fps. This high-performance

version, named LASSR4, is based on the parallel exe-

cution of four independent LASSR cores on the FPGA.

All these results open interesting avenues for fu-

ture exploration both on software and hardware issues.

First, we plan to reduce the complexity of the Texture

Classification block that consumes more than 75% of

the slices LUT and 87% of the DSP blocks used for the

LASSR core. The TC complexity is directly linked to

the classification error and the size n of the sliding win-

dow used to estimate the SVM parameters. For the TC

implementation, we have pragmatically chosen n = 16

with a classification error rate lower than 10%. A deeper

analysis must be conducted to explore the challenging

trade-off between image quality, classification accuracy,

and resource utilization. The main idea is to maintain

a high quality of SR data while releasing constraints on

the classification error and then reducing the hardware

complexity.

Secondly, this paper has validated the hardware de-

sign of the LASSR core using a rapid prototyping strat-

egy based on Matlab, Simulink, and ModelSim. In the

FPGA-in-the-loop approach, the design of LASSR has

been deployed to the Xilinx VC707 board and runs in

real-time on the Xilinx Virtex 7. This approach helped

us to validate the different blocks of the LASSR core.

However, all the other surrounding components are sim-

ulated in the software environment. Typically, the im-

age sensor is simulated and input images are passed

from Matlab/Simulink to the HDL design on the FPGA

device. After processing, the SR output images are then

passed back from the FPGA to Matlab for further anal-

ysis. So, the next step will be the full implementation

on an FPGA-based platform including an image sensor

to experimentally validate an SR smart camera able to

produce a 4K SR live video from a captured 2K flow.
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Table 5 Characteristics of State-of-the-art real-time FPGA hardware implementations

Publication [47] [30] [25] Our work
Method IBP CNN CNN LASSR (1 core) LASSR (4 cores)
FPGA Xilinx Virtex-7 Virtex UltraScale Xilinx Kintex UltraScale Xilinx Virtex-7
Device XC7VX485T XCVU095 XCKU040 XC7VX485T
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