Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Local gradient full-scale transform patterns based off-line text-independent writer identification

Abstract : Handwriting based writer identification is one of the reliable components of behavioral biometrics. A huge effort has been done in recent years to improve the writer identification performance. Our paper presents a new and effective off-line text-independent system for writer identification. Extracting features from handwriting substantially impacts the ability of the classification process to identify the query writers. With the use of suitable classifier, a well-designed and discriminative feature extraction improves the classification performance. For that, we introduce a discriminative yet simple feature method, referred to as Local gradient full-Scale Transform Patterns (LSTP). The proposed LSTP algorithm captures salient local writing structure at small regions of interest of the writing. These writing regions are termed as connected components. In the classification stage, we perform Hamming distance based NN classifier to compare and match LSTP feature vectors. The proposed framework is evaluated on 9 well-known handwritten benchmarks. Experimental results show high identification performance against the current state-of-the-art. (C) 2020 Elsevier B.V. All rights reserved.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-02877903
Contributeur : Ciad - Université de Bourgogne <>
Soumis le : lundi 22 juin 2020 - 17:54:45
Dernière modification le : mardi 23 juin 2020 - 03:05:18

Identifiants

Citation

Abderrazak Chahi, Youssef El Merabet, Yassine Ruichek, Raja Touahni. Local gradient full-scale transform patterns based off-line text-independent writer identification. Applied Soft Computing, Elsevier, 2020, 92, pp.106277. ⟨10.1016/j.asoc.2020.106277⟩. ⟨hal-02877903⟩

Partager

Métriques

Consultations de la notice

16