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Abstract ���

The objective of this study was to apply cuttlefish (Sepia officinalis) skin protein isolate ���

(CSPI) and hydrolysates (CSPH), using commercial Savinase® and Purafect® enzymes, as ���

bioactive additives in the elaboration of gelatin-based films. CSPH and CSPI enriched films ���

were colored and exhibited a higher UV-barrier properties compared to gelatin film. In ���

addition, compared to CSPI added film, an increase of the glass transition temperature by ���

20% and 4%, respectively, for Purafect and Savinase hydrolysates enriched films was noted. ���

However, elongation at break decreased significantly for CSPH incorporated films by 2.5-���

fold. The tensile strength was reduced by 28.2% and 44.4% for Purafect and Savinase �	�

hydrolysates added films, respectively. Furthermore, a decrease of water contact angle by �
�

45% and 51% for films added with Purafect and Savinase hydrolysates, respectively, was ���

displayed compared to gelatin film. Interestingly, CSPH enriched films also displayed higher ���

antioxidant potential than control gelatin films evaluated by several in vitro assays. ���

 ���

Keywords: Cuttlefish skin proteins and hydrolysates; Edible films; Functional properties; ���

Antioxidant activity. ���
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1. Introduction ���

 In recent years, the interest in by-products (viscera, head, trimmings, bones and skin) �	�

from the fishing industry has been gradually increased, now being considered as a potential �
�

source of resources rather than a disposal waste (Alfaro, Balbinot, Weber, Tonial, & ���

Machado-Lunkes, 2015). In order to valorize fish by-products, several bioactive molecules ���

can be extracted from the skin of various marine species such as gelatin, protein isolate, etc. ���

Indeed, fish proteins have advantageous filmogenic properties that can promote the ���

development of films, such as the ability to form networks, plasticity, elasticity and good ���

barrier to oxygen (Cortez-Vega, Pizato, de Souza, & Prentice, 2014). ���

 Gelatin is an important biopolymer derived by hydrolysis from collagen, the primary ���

protein component of animal connective tissues, including skin and tendon (Poppe, 1997). ���

Gelatin is widely used by food, cosmetic and pharmaceutical industries because of its �	�

functional and technological properties. Fish gelatins have been also extensively studied as �
�

biodegradable biopolymers due to their good film forming ability leading to produce ���

transparent, almost colorless, water-soluble and highly extensible films (Hosseini & Gómez-���

Guillén, 2018; Alfaro et al., 2015). Furthermore, these biodegradable films are considered as ���

ecofriendly packaging reducing thereby plastic wastes (Hoque, Benjakul, & Prodpran, 2011a; ���

Alinejad, Motamedzadegan, Rezaei, & Regenstein, 2017). ���

 Gelatin films could be used as carrier agents for many types of additives such as ���

antimicrobial agents in order to delay or prevent the growth of microorganisms on the ���

products surface and thereby extend the shelf life and improve the safety of packaged foods ���

(Etxabide, Uranga, Guerrero, & de la Caba, 2017). Antioxidants including plant extracts �	�

(Gómez-Guillén, Ihl, Bifani, Silva, & Montero, 2007; Hoque, Benjakul, & Prodpran, 2011b; �
�

Jridi et al., 2017), phenolic compounds (Bao, Xu, & Wang, 2009; Benbettaïeb et al., 2016), ���

essential oils (Martucci, Gende, Neira, & Ruseckaite, 2015) or polysaccharides (Abdelhedi et ���
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al., 2018) are additives often incorporated in fish gelatin films preparation to prevent or delay ���

food oxidation. Recently, many studies dealt with the elaboration and characterization of ���

protein hydrolysates from various marine sources. Protein hydrolysates, generally obtained by ���

autolytic or heterolytic enzymatic hydrolysis process under controlled conditions from marine ���

sources, are considered as bioactive peptides which are characterized by several biological ���

activities including antioxidant (Abdelhedi et al., 2016; Nasri et al., 2013), antibacterial ���

(Beaulieu, Bondu, Doiron, Rioux, & Turgeon, 2015), anti-diabetic (Harnedy et al., 2018), �	�

anti-hypertensive (Lassoued et al., 2015), anti-inflammatory (Ahn, Cho, & Je, 2015), �
�

cholesterol-lowering ability and immunomodulating effects (Nasri, 2017). ���

However, few studies were interested in protein hydrolysates incorporation as ���

antioxidant agents into gelatin films. In this context, Giménez, Gómez-Estaca, Alemán, ���

Gómez-Guillén, & Montero (2009) investigated the effect of the incorporation of giant squid ���

gelatin hydrolysates on the antioxidant property of the gelatin film. Additionally, Alinejad et ���

al. (2017) studied the influence of adding protein hydrolysates obtained from whitecheek ���

shark on the physical-mechanical properties and antioxidant activity of bovine gelatin films. ���

Abdelhedi et al. (2018) reported that bioactive blend and bilayer films based on gelatin and ���

smooth-hound viscera proteins, incorporated or not with sulfated polysaccharide or smooth-�	�

hound peptides were successfully made and showed interesting antioxidant potential. �
�

 In a previous work, blend films based on cuttlefish (Sepia officinalis) skin gelatin 	��

(CSG) and protein isolate (CSPI) at different ratios were prepared and showed interesting 	��

antioxidant activity which is CSPI content dependent (Kchaou et al., 2017). In the present 	��

research, enzymatic hydrolysis was used in order to produce different protein hydrolysates 	��

(CSPH) from CSPI. Therefore, the aim of this study was to evaluate the effect of CSPH 	��

incorporation on the physical-chemical and antioxidant properties of gelatin films. 	��
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2. Materials and methods 	��

2.1. Collection and preparation of cuttlefish skin  	��

 Cuttlefish (S. officinalis) by-products were obtained from the local fish market of Sfax City, 		�

Tunisia. Cuttlefish were collected from February to April at the golf of Gabes. The samples 	
�

were packed in polyethylene bags, placed in ice and transported to the research laboratory 
��

within 30 min. Upon arrival, cuttlefish skins were washed several times with tap water to 
��

eliminate residues and dark ink and then stored at -20 °C in plastic bags until used for gelatin 
��

and protein isolate production. 
��

2.2. Extraction of gelatin 
��

Gelatin extraction was carried out from cuttlefish skin as described by Jridi et al. (2013a). 
��

Cuttlefish skin was first cut into small pieces (1 cm × 1 cm) and soaked in 0.05 M NaOH 
��

(1:10, w/v). The mixture was stirred for 2 h at room temperature (25±2 °C) and alkaline 
��

solution was changed every 30 min. The alkaline-treated skins were then washed with 
	�

distilled water until a neutral pH was obtained. The prepared skins were soaked in 100 mM 

�

glycin–HCl buffer, (pH 2.0) with a solid/solvent ratio of 1:10 (w/v) for 18 h at room ����

temperature (25±2 °C) (hydrolysis of collagen), and then treated at 50 °C for additional 18 h ����

to extract the gelatin fractions. The supernatant of the obtained mixture was then freeze-dried ����

(Moduloyd Freeze dryer, Thermo Fisher, USA) at -50 °C and 121 mbar during 72 h. The ����

resulting cuttlefish skin gelatin (CSG) was used for film preparation. ����

2.3. Extraction of cuttlefish skin protein isolate  ����

Protein isolate was extracted from cuttlefish skin as reported in our previous work  ����

(Kchaou et al., 2017) using the pH-shifting method. An aqueous dispersion of cuttlefish skin ����

mince was first prepared, by solubilisation in distilled water. The pH was adjusted at 11.0 ��	�



��
�

using 2 M NaOH solution for 30 min. The ratio cuttlefish mince and water was 1:3 (w/v). ��
�

Solubilisation was maintained under continuous stirring at room temperature (25±2 °C). The ����

resulting mixture was centrifuged. The obtained pellet containing the collagen underwent an ����

acidic treatment with an HCl solution (1 M) at pH 2.0 for 15 minutes, followed by a thermal ����

treatment at 50 °C for 1 hour to denature the triple helix collagen structure. The resulting ����

mixture was centrifuged and the resulted supernatant was freeze-dried (at -50 °C and 121 ����

mbar during 72 h) and referred to as cuttlefish skin protein isolate (CSPI). ����

2.4. Preparation of protein hydrolysates from CSPI ����

 In order to obtain protein hydrolysates, CSPI was first dissolved in distilled water at ����

50 °C with a solid/solvent ratio of 1:4 (w/v). Then, the pH of the mixture was adjusted to the ��	�

optimum value of each enzymatic activity (pH 10.0) by adding 4 N NaOH solution. ��
�

Thereafter, protein isolate was subjected to enzymatic hydrolysis, using two exogenous ����

enzymes, Savinase® and Purafect®, added at the same enzyme/protein ratio 6/1 (U/mg of ����

protein) to compare their hydrolytic efficiencies. During the reaction (50 °C), the pH of the ����

mixture was maintained constant (pH 10.0) by continuous addition of NaOH solution. After ����

the achievement of the final digestion reaction time (7 h), the reactions were stopped by ����

heating the different solutions at 95 °C for 20 min to inactivate the enzymes. The ����

supernatants, corresponding to the different protein hydrolysates, were then collected, freeze-����

dried (at -50 °C and 121 mbar during 72 h) and stored at -20 °C for further use. Hydrolysates ����

prepared using Savinase® and Purafect® were noted as Savinase and Purafect hydrolysates, ��	�

respectively. ��
�

 The degree of hydrolysis (DH), defined as the percent ratio of the number of peptide ����

broken to the total number of bonds, was calculated based on the volume of NaOH added ����

during the reaction, as described by Adler-Nissen (1986) using the following formula: ����
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������ �
���	�
�� � 
��
����	� � �	�� ��� �

 ����

where B is the amount of NaOH consumed (mL), Nb is the normality of the base, MP is the ����

mass (g) of the protein (N = 6.25), �  represents the average degree of dissociation of the � -����

NH2 groups in protein substrate (� �
�� �����

����� ����� ��  and htot is the total number of peptide ����

bonds in the protein substrate and was assumed to be 8.6 meq/g (Alder-Nissen, 1986). ����

CSPI was hydrolyzed with Purafect® and Savinase® in order to elaborate bioactive ��	�

peptides. The hydrolysis kinetic curves (data not shown) displayed the same evolution, ��
�

characterized by a high rate of hydrolysis during the first hour, which was subsequently ����

slowing down with the reaction time and then reached a stationary phase. Regarding the ����

protease activity, Savinase® was more efficient than Purafect®. After 30 min of hydrolysis, ����

DHs values reached 6.92% and 3.84% for Savinase hydrolysate and Purafect hydrolysate, ����

respectively. After 7 h of hydrolysis, DHs values were 13.52% and 8.87% using Savinase® ����

and Purafect®, respectively. Indeed, the difference in DH values between Purafect and ����

Savinase hydrolysates is essentially due to the difference in the specificity of enzymes used. ����

During hydrolysis, Savinase® and Purafect® have different cleavage positions on polypeptide ����

chains. Savinase® and Purafect® produce therefore different hydrolysates (Bkhairia et al., ��	�

2016). Typical hydrolysis curves were reported for protein hydrolysates of smooth hound ��
�

(Mustelus mustelus) (Abdelhedi et al., 2016), thornback ray (Raja clavata) (Lassoued et al., ����

2015) and Goby (Zosterissessor ophiocephalus) (Nasri et al., 2013). In the following work, ����

we will focus only on hydrolysates obtained after 7 hours (end of hydrolysis). ����

2.5. Films preparation  ����

CSG film forming solution was prepared by dissolving 4 g of CSG in 100 mL distilled ����

water. The mixture was heated at 60 °C for 30 min with continuous stirring and the pH was ����
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adjusted to 5.5 with NaOH (0.5 M) to ensure fully dissolution and to obtain an homogeneous ����

colloidal solution of gelatin, that conduct to less crystalline and more homogeneous films. ����

CSG-enriched films were prepared by incorporating CSPH and CSPI at a concentration of ��	�

10% (w/w gelatin) in the film forming solutions. Then, the mixtures were gently stirred at ��
�

room temperature (25±2 °C) for 30 min. Glycerol was used as plasticizer at a concentration of ����

15% (w/w of gelatin). Films were obtained by casting each solution (25 mL) into plastic Petri ����

dishes (12 cm of side). Control films were made from the CSG film forming solutions without ����

adding CSPH and CSPI. Drying was then performed in a ventilated climatic chamber (KBF ����

240 Binder, ODIL, France) at 25 °C and 50% relative humidity (RH) for 24 h. Dried films ����

were manually peeled off from the surface and equilibrated at 25 °C and relative humidity ����

(RH) of 50% before analyses. ����

2.6. Physical characterization of the films ����

2.6.1. Thickness ��	�

Films thickness was measured using a digital thickness gauge (PosiTector 6000, ��
�

DeFelsko Corporation, USA). Five measurements at different locations were taken from each ����

film sample peeled from Petri dish, one from the center and four from the perimeter. The ����

average value was used in the calculation and taken into account for mechanical properties. ����

2.6.2. Color ����

Color of films was determined using a CIE colorimeter (CR-200; Minolta, Japan). A ����

white standard color plate (L0* = 97.5, a0* = -0.1, and b0* = 2.3) was used as background for ����

the color measurements of the films. Color of the films was expressed as L* ����

(lightness/brightness), a* (redness/greenness) and b* (yellowness/blueness) values. The ����
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difference in color (� E*) for enriched films was calculated referred to the control CSG films ��	�

according to the following equation: ��
�

�� � � � ��� � �  ! ��" � �  ! ��# � �   �	��

Where � L* , � a* and � b* are the differences between the color parameters of the enriched �	��

films and those of control CSG films. �	��

2.6.3. Light transmission �	��

Film portions (1 cm x 3 cm) were placed in the test cell of a UV–Visible �	��

spectrophotometer (SAFAS UVmc). An empty test cell was used as a reference. UV-vis �	��

absorption spectra were recorded in the wavelength ranging from 200 to 800 nm. Results of �	��

UV-vis absorption spectra were then converted in terms of transmission spectra using the �	��

following formula: �		�

$��� � 
� �%&� 	
��  �	
�

Where T is the light transmission (%) and A representing the absorbance  �
��

2.6.4. FTIR spectroscopy �
��

FTIR spectra of films were obtained using a Perkin-Elmer spectrometer (Spectrum 65, �
��

France) equipped with an attenuated total reflectance (ATR) accessory with a ZnSe crystal. 32 �
��

scans were collected with 4 cm�1  resolution in the wavenumber range 650-4000 cm�1 . �
��

Calibration was done using background spectrum recorded from the clean and empty cell at �
��

25 °C. The Spectrum Suite ES software was used for FTIR data treatment.  �
��

2.6.5. Differential scanning calorimetry (DSC)  �
��
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Thermal properties of films were studied using a differential scanning calorimeter �
	�

(DSC Q20, TA Instruments). Films (5 mg) were placed into aluminum pans, sealed and �

�

subjected to a double heating-cooling cycle from -50 °C to 150 °C at a rate of 10 °C/min. The ����

empty aluminum pan was used as a reference. Nitrogen was used as purge gas at a flow rate ����

of 25 mL/min. Glass transition temperature (Tg) for each sample was then determined from ����

the mid-point of the second heating cycle using TA Universal Analysis 2000 software ����

(version 4.5 A, TA instruments). ����

2.6.6. Thermogravimetric analysis (TGA)  ����

Thermogravimetric analysis was carried out to determine the thermal stability of the ����

film samples. This technique permits the continuous weighing of the film as a function of the ����

temperature rise in a controlled atmosphere (nitrogen). Thermogravimetric measurements ��	�

were performed using a TGA instrument (SDT Q 600). The samples (approximately 10 mg) ��
�

were heated from 25 to 600 °C at a heating rate of 5 °C/min under nitrogen atmosphere. Data ����

analysis was performed using TA Universal Analysis 2000 software (version 4.5 A, TA ����

instruments). ����

2.6.7. Observation of film microstructure ����

The cross-section morphology of film samples was determined using scanning ����

electron microscopy (SEM) (Hitachi S4800), at an angle of 90° with the surface, using ����

different magnifications. Prior to imaging the film cross-section, film samples were ����

cryofractured by immersion in liquid nitrogen and fixed on the SEM support using double ����

side adhesive tape, and observed under an accelerating voltage of 2.0 kV and an absolute ��	�

pressure of 60 Pa, after sputter coating with a 5 nm thick gold. ��
�

2.6.8. Mechanical properties ����



���

Tensile strength (TS, MPa) and elongation at break (EAB, %) of film samples were ����

determined using a texture analyzer (TA. HD plus model, Stable MicroSystems, UK) with a ����

300 N load cell, according to the standard method ISO 527-3 (similar to the ASTM D882 ����

method). Rectangular film samples with dimensions (2.5 cm x 8 cm) were cut using a ����

standardized precision cutter (Thwing-Albert JDC Precision Sample Cutter) in order to get ����

tensile test piece with an accurate width and parallel sides throughout the entire length. Before ����

testing, all the samples were equilibrated for two weeks at 25 °C and 50% RH. Equilibrated ����

films samples were then installed vertically in the extension grips of the testing machine and ��	�

stretched uniaxially with a cross-head speed of 50 mm/min until breaking according to the ��
�

ISO standard. The maximum load and the final extension at break were determined from the ����

corresponding stress-strain curves and used for the calculation of TS and EAB as follows:  ����

$'���()"� � �
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where, t is the thickness (mm), w the width (mm) of films, l0  the initial length of the film and ����

l is the length of the film when it breaks. Measurements were carried out at room temperature����

(25 ± 2 °C) and six samples for each film formulation were tested. ����

2.6.9. Surface properties ����

The surface tension of films (� film) and its polar (� film
P) and dispersive (� film

D) ��	�

components were determined using the Owens & Wendt (1969) method, using water (� Liq  = ��
�

72.8 mN/m ; �Liq D = 21.8 mN/m ; �Liq P = 51 mN/m), ethylene glycol (� Liq  = 47.7 mN/m ; �Liq D ����

= 30.9 mN/m; � Liq P = 16.8 mN/m) and diiodomethane (� Liq  = 50.8 mN/m ; � Liq D = 50.8 mN/m ����

; � Liq P  = 0 mN/m) according the following equations: ����
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Where � , 9Liq, 9Liq
D and 9Liq

P are respectively the contact angle, the surface tension, the ����

dispersive and the polar components of the surface tension of the tested liquid; 9film
P and 9film

D ��	�

are the polar and dispersive components of the surface tension of the film surface tested. The ��
�

contact angle is expressed in degree and all the surface tension parameters are expressed in ����

mN.m-1. ����

 Three liquids (water, ethylene glycol and diiodomethane), with well-known polar 9Liq
P ����

and dispersive 9Liq
D contributions, were used. The contact angle measurements were carried ����

out using the sessile drop method on a goniometer (Drop Shape Analyzer 30 from ����

KrussGmbH), equipped with an image analysis software (ADVANCE). First, a droplet of ����

each liquid (C2 µL) was deposited on the film surface with a precision syringe. The method is ����

based on image processing and curve fitting for contact angle measurement from a theoretical ����

meridian drop profile, determining contact angle between the baseline of the water drop and ��	�

the tangent at the drop boundary. Then, the contact angle was measured at 0 time (<2 s) and at ��
�

30 s on both sides of the drop and averaged. Five measurements per film were carried out. All ����

the tests were conducted in an environmental chamber with a constant environment at a ����

temperature of 25±2 °C and a relative humidity of 50±1%. ����

2.7. In vitro antioxidant activity  ����

2.7.1. Reducing power assay ����



���
�

The ability of CSPI, CSPH and films to reduce iron (III) was determined according to ����

the method of Y�ld�r�m, Mavi, & Kara (2001). The hydrolysates and the protein isolate were ����

tested alone or in films with a concentration of 4.4 mg/mL. For this, a volume of 0.5 mL of ����

each sample or small pieces of each film (10 mg), was mixed with 1.25 mL of 0.2 M ��	�

phosphate buffer (pH 6.6) and 1.25 mL of 1% (w/v) potassium ferricyanide. The mixtures ��
�

were then incubated for 30 min (3 h for the films) at 50 °C. After incubation, 1.25 mL of 10% ����

(w/v) trichloroacetic acid was added to the mixtures which were centrifuged for 10 min at ����

10,000g. Finally, 1.25 mL of the supernatant solution of each sample mixture was mixed with ����

1.25 mL of distilled water and 0.25 mL of 0.1% (w/v) ferric chloride. After 10 min reaction ����

time, the absorbance of the resulting solutions was measured at 700 nm using polystyrene ����

spectrophotometry cuvettes. Higher absorbance of the reaction mixture indicated higher ����

reducing power. The values are presented as the means of triplicate analyses. ����

2.7.2. DPPH free radical-scavenging activity  ����

The DPPH free radical-scavenging activity of CSPH, CSPI and films was determined ��	�

as described by Bersuder, Hole, & Smith (1998) with some modifications. 500� L of each ��
�

sample or small pieces of each film (10 mg) were added to 375 � L of ethanol solution and �	��

125 � L of 0.02 mM DPPH in ethanol. The mixtures were then incubated for 1 h at room �	��

temperature in the dark. Control tubes were assessed in the same manner without film �	��

samples. The reduction of DPPH radical was measured at 517 nm, using a UV–visible �	��

spectrophotometer. �	��

The free radical-scavenging activity was calculated as follows: �	��
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where�5K  is the absorbance of DPPH solution without addition of the films,�5L  is the �	��

absorbance of DPPH solution containing the film samples and O�� is the absorbance of blank �		�

tubes containing film samples without addition of the DPPH solution.  �	
�

A lower absorbance of the reaction mixture indicated a higher radical-scavenging activity. �
��

The test was carried out in triplicate. �
��

2.7.3. ̂ Ð-carotene-linoleate bleaching assay �
��

 The ability of CSPH, CSPI and films to prevent � -carotene bleaching was determined �
��

according to the method of Koleva, van Beek, Linssen, de Groot, & Evstatieva (2002). 0.5 mg �
��

� -carotene in 1 mL chloroform was mixed with 25 � L of linoleic acid and 200 � L of Tween-�
��

40. The chloroform was completely evaporated under vacuum in a rotator evaporator at 40 �
��

°C, then 100 mL of double distilled water were added and the resulting mixture was �
��

vigorously stirred. The emulsion obtained was freshly prepared before each experiment. �
	�

Aliquots (2.5 mL) of the � -carotene-linoleic acid emulsion were transferred into test tubes �

�

containing 0.5 mL from each sample or small pieces of each film (10 mg). The tubes were ����

immediately placed in a water bath and incubated at 50 °C for 2 h. Thereafter, the absorbance ����

of each sample was measured at 470 nm using polystyrene spectrophotometry cuvettes. The ����

control tube was prepared in the same conditions by adding 0.5 mL of distilled water instead ����

of the sample solution. The antioxidant activity was evaluated in terms of � -carotene ����

bleaching inhibition using the following formula: ����

P 8 E"QRSGHG�#TG"EUJHI�JHUJ#JSJRH�� � � � V
 8 �
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where A0: absorbance at t=0 min, A120: absorbance at t=120 min. The test was carried out in ����

triplicate. ��	�
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2.8. Statistical analysis ��
�

Statistical analyses were performed with SPSS ver. 17.0, professional edition using ANOVA ����

analysis at a p level<0.05. Duncan's multiple range test (p-value<0.05) was used to detect ����

differences among mean values of all the parameters analyzed for the different films. A ����

standard deviation at the 90% confidence level was used to compare the DSC data for the ����

different films. ����

3. Results and discussion ����

3.1. Functional properties of films ����

3.1.1. Color of films ����

 The color data of CSG films and those enriched by CSPI and CSPH are given in ��	�

Table 1. The highest L* and lowest b* values were detected with control films. Decreases in ��
�

L*-values and increases in a* and b*-values were observed in films, when CSPI and CSPH ����

were incorporated, indicating a decrease in lightness and an increase in browning color. ����

Enriched films are slightly brown compared to control films. The color difference was ����

confirmed by the calculation of � E* taking the gelatin film as reference. The obtained � E*-����

values ranged from 5.47 to 6.94. Indeed, at the final moment of the enzymatic hydrolysis, ����

more colored peptides are generated. According to Dong et al. (2008), the longer hydrolysis ����

time probably accelerated the pigments oxidation and Maillard reaction. This may explain the ����

darkening and browning color of CSPH. Similarly, Nuanmano, Prodpran, & Benjakul (2015) ����

reported that the addition of fish gelatin hydrolysates with higher DH (95%) to fish ��	�

myofibrillar protein films leads to the same behaviour. Indeed, the yellowness may be due to ��
�

the amino groups (-NH2) of the hydrolysate, which may interact with the carbonyl groups ����

(C=O) of lipid oxidation products in the polymeric matrix via the Maillard reaction, ����
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particularly during drying of the film (Nuanmano et al., 2015; Rocha et al., 2018). Hasanzati ����

Rostami, Motamedzadegan, Hosseini, Rezaei, & Kamali (2017) indicated a rise of the ����

yellowish (b-values) and � E* values in gelatin films with the silver carp protein hydrolysate ����

content. Furthermore, Lin et al. (2018) attributed the increase of yellowness to the higher ����

content of lysine and histidine amino acids incorporated in the gelatin film matrix. Regarding ����

the increase in redness with the addition of CSPH to gelatin films, this fact could be due to the ����

initial colored compounds existing in CSPI (undigested protein) as it has been reported in ��	�

previous work (Kchaou et al., 2017). Indeed, as a function of hydrolysis time, more peptides ��
�

were generated, which may explain the darker color of CSPH.������

3.1.2. UV and light barrier efficacy  ����

 Transmission of UV and visible light of gelatin films and those enriched with CSPI ����

and CSPH was determined at selected wavelengths from 200 to 800 nm. Fig. 1 illustrated that ����

prepared films have a high UV-barrier property in the range of (200-280 nm). This is ����

attributed to the presence of some aromatic amino acids such as phenylalanine and tyrosine in ����

the gelatin that absorb UV light (Jongjareonrak, Benjakul, Visessanguan, Prodpran, &Tanaka, ����

2006). Hoque et al. (2011a) reported similarly a very low transmission (0.01%) at 200 nm for ����

cuttlefish (Sepia pharaonis) gelatin films. At 350 nm, light transmission decreases remarkably ��	�

by about 56% for both hydrolysates incorporated films, respectively. These finding scould be ��
�

explained by the fact that CSPH could contain more aromatic amino acids than the gelatin. In ����

the visible range, control CSG film was the most transparent (�  80% transmission). The light ����

transmission decreased with the incorporation of CSPI and CSPH in the UV (200-400 nm) ����

and the visible (400-800 nm) ranges. Enriched films provided slighter barrier against light ����

incidence and could be used as barrier packaging to protect packaged foods against light ����

oxidative deterioration. ����



���
�

3.1.3. FTIR spectra ����

 The infrared spectroscopy was used in this study in order to assess and determine the ����

interactions established between gelatin and CSPH or CSPI in the film matrix. Fig. 2 showed ��	�

the infrared spectra of gelatin film and those enriched with CSPI and protein hydrolysates. ��
�

Prepared films displayed similar spectra in the range of 700-1800 cm-1. The main ����

characteristic absorption bands in gelatin films are located at 1560-1680 cm-1 (representing ����

C=C and C=O stretching of primary and secondary amine N-H band of amide-I), 1540-1610 ����

cm-1 (assigned to NH of amide-II) and 1230-1340 cm-1 (assigned to aromatic primary amine, ����

C-N and N-H stretch of amide-III or vibrations of CH2 groups of glycine) (Hoque et al., ����

2011a). Moreover, all spectra of gelatin films showed major bands at approximately 3300-����

3500 cm-1and 2920-2945 cm-1, corresponding to amide A (NH-stretching coupled with ����

hydrogen bonding) and amide B (asymmetric stretching vibration of =C–H and –NH3+). In ����

addition, a band located at 1040-1080 cm-1 was found in all film samples, corresponding to ��	�

the glycerol (-OH group) added as a plasticizer (Bergo & Sobral, 2007). The spectra did not ��
�

show significant difference in the position of the amides I, II and III. In addition, all the ����

samples of gelatins, protein isolates and protein hydrolysates derived from the same raw ����

material (cuttlefish skin). Thus, the added protein hydrolysates did not generate or suppress ����

the overall interactions present initially in gelatin films. However, for the amide A region, a ����

shift to lower wavenumbers was detected with the enriched films compared to gelatin film. ����

Indeed, amide A shifted from 3320 cm-1 to 3314 cm-1, 3313 cm-1 and 3317 cm-1 with the ����

addition of CSPI, Purafect and Savinase hydrolysates, respectively. Generally, the decrease in ����

vibrational wavenumber and broadening of the OH and NH vibration bands could be linked to ����

the water content changes and water-biopolymer interactions via hydrogen bonding, which ��	�

could affect the network organization (Arfat, Benjakul, Prodpran & Osako, 2014; Kchaou et ��
�
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al., 2017). This strengthening of the matrix by hydrogen bond is often revealed by a higher �	��

thermal stability or Tg  �	��

3.1.4. Thermal properties by DSC and TGA analyses �	��

 The thermal properties of gelatin films and those enriched with CSPI and CSPH were �	��

examined by DSC and the glass transition temperature (Tg) was determined from the second �	��

cycle of heating. The glass transition is associated with the molecular segmental motion of �	��

disordered (amorphous phase) structure, which undergoes from a brittle glassy solid state to a �	��

rubbery state (Nilsuwan, Benjakul, & Prodpran, 2018). As shown in Table 1, Tg value of �	��

control gelatin film was 58.4 °C and increased gradually to 59.5 °C and 61.8 °C with the �		�

addition of CSPI and Savinase hydrolysate, respectively. Tg value of control gelatin film �	
�

(58.4 °C) was higher than that reported by Nilsuwan et al. (2018) for tilapia skin gelatin based �
��

films (45.5 °C) and lower than that stated by Jridi, Abdelhedi, Zouari, Fakhfakh, & Nasri �
��

(2019a) for films based on grey triggerfish skin gelatin (71.3 °C). The difference on Tg values �
��

for gelatin-based films depends on gelatin sources, compositions of film and process used �
��

(Tongnuanchan, Benjakul, Prodpran, & Nilsuwan, 2015).  �
��

Interestingly, Purafect hydrolysate incorporated films showed the highest Tg values �
��

which reached 71.4 °C. The increase in Tg values with the incorporation of CSPH could be �
��

explained by the establishment of interactions between hydrogen bonds of CSG and CSPH in �
��

the film matrix as displayed from FTIR experiments. An increase of the Tg value was also �
	�

reported by Lin et al. (2018) with the addition of amino acids (lysine, arginine and histidine). �

�

Therefore the thermal stability of gelatin films was improved. However, Hasanzati Rostami et ����

al. (2017) stated a decrease of Tg values with the addition of silver carp protein hydrolysates ����

to fish gelatin films. The authors suggest that this decrease of Tg might be due to the lower ����

molecular weight of protein hydrolysates which can position between protein chains ����

themselves. Protein hydrolysates can also interfere with the protein-protein interaction, which ����
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led to increasing the free volume between the polymer chains and the mobility of molecules ����

i.e. a plasticizing mechanism (Giménez et al., 2009).����

The thermal stability of films was assessed by TGA at temperatures ranging from 25 ����

to 600 °C. The TGA is a technique in which the mass change of a substance is measured ��	�

when it is subjected to a controlled temperature program. The thermal degradation ��
�

temperature, the weight loss (� w) and the residue of films are presented in Table 1. From the ����

TGA curves (supplementary data), two main stages of weight loss were observed. The first ����

step of transformation starts from the ambient temperature until around 175 °C. This weight ����

loss (� w1) step corresponds to the loss of free and bound water in the films (above 100 °C) ����

and varied from 11% to 14%. The second stage of transformation is related to the thermal ����

degradation or the decomposition of the gelatin chains. The degradation temperatures (Tmax) ����

were ranging from 296.0 °C to 310.7 °C. In this stage, the weight loss (� w2) of films is ����

greater and ranged from 64.9% for gelatin films to around 60% for enriched films. The ����

residual mass at 600 °C, rose from 19% to about 23 and 25% when the protein hydrolysates ��	�

and CSPI were incorporated in gelatin films. The increase in Tmax and residual mass values ��
�

suggest that the addition of CSPI and protein hydrolysates limited the thermal degradation of ����

gelatin films. The interactions between CSPH or CSPI and CSG in the film matrix, as ����

previously demonstrated by FTIR and DSC results, mostly yielded the stronger film network, ����

leading to higher heat resistance of enriched films than that of the CSG films (Arfat et al., ����

2014). Their interactions mainly determine the thermal stability of enriched gelatin films by ����

hydrogen bonds (de Morais Lima et al., 2017). ����

3.1.5. Microstructure ����

 Scanning Electron Microscopy observations were conducted in order to better ����

understand the microscopic structure of enriched films. Fig. 3 illustrates the scanning electron ��	�
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micrographs of the cross-section of control gelatin film and those containing CSPI and ��
�

Purafect hydrolysate. The cross-section micrographs allow not only the observation of film ����

internal microstructures but they also contribute to a better knowledge of the film-forming ����

behavior of polymers. The micrographs revealed homogenous and uniform structure of ����

control and CSPI enriched films, suggesting therefore that the polymer and the additives ����

interacted well with each other. This allowed to form a cohesive and continuous matrix (de ����

Morais Lima et al., 2017). However, the micrograph of Purafect hydrolysate added film ����

displayed a relatively heterogeneous structure. ����

3.1.6. Mechanical properties  ����

Results of tensile strength (TS) and elongation at break (EAB) of gelatin films and ��	�

those enriched with CSPI and CSPH are shown in Table 1. Among the different films, control ��
�

gelatin film showed the highest TS (22.67 MPa) and EAB (32.83%) values, followed by CSPI ����

enriched film, 22.09 MPa and 26.26%, respectively. The CSPH incorporation leads to a ����

significant decrease in the mechanical properties of gelatin films. Indeed, TS decreased by ����

30.1% and 45.8% for films added with Purafect and Savinase hydrolysates, respectively. The ����

EAB were around three-fold lower for CSPH enriched films compared to control film. The ����

decrease in both TS and EAB for CSPH incorporated films revealed the fragility of these ����

films, which are mechanically weaker and less deformable compared to control film. The ����

small peptides could be easily inserted in the protein network and establish hydrogen ����

bondings with the gelatin chains, which is detrimental for the chain–chain interactions. These ��	�

tend to decrease the density of intermolecular interactions and to increase the free volume ��
�

between gelatin chains (Giménez et al., 2009).  ����

Our findings were in accordance with those of Jridi et al. (2013b) who indicated that ����

both TS and EAB values of CSG films decreased with the increase of pepsin used for gelatin ����



���

extraction (or the extent of gelatin hydrolysis). Moreover, Hasanzati Rostami et al. (2017) ����

reported that the mechanical strength was significantly reduced for gelatin films with the ����

addition of fish protein hydrolysate obtained from silver carp. In addition, Giménez et al. ����

(2009) reported that increasing the content of gelatin hydrolysates in the squid skin gelatin ����

films leads to a decrease of the mechanical resistance (puncture force) coupled to an increase ����

of the distensibility (puncture deformation) revealing a plasticization process. Furthermore, ��	�

microstructure results displayed a heterogeneous structure for Purafect hydrolysate enriched ��
�

films. This result correlates with the decrease in tensile strength and elongation at break for ����

CSPH incorporated films.  ����

3.1.7. Surface properties ����

Surface properties of gelatin film and those enriched with CSPI and CSPH were ����

determined firstly by measuring their water contact angles (WCA) at 0 and 30 s as shown in ����

Fig. 4A. CSPI enriched film showed the highest initial water contact angle (WCA=114°) ����

followed by the gelatin film (88°). The higher WCA of CSPI added films could be explained ����

by the fact that CSPI contains more hydrophobic amino acids (leucine, isoleucine, valine, ����

methionine, tyrosine and phenylalanine, which represents 191.6 residues per 1000 residues) ��	�

compared to CSG that contains 80.4 residues per 1000 residue of hydrophobic acids (Kchaou ��
�

et al., 2017). The incorporation of the CSPH leads to a significant decrease in WCA values ����

which were in the range of 56-63°. Such results could be the consequence of the hydrophilic ����

character of the CSPH, which has shorter protein chains that contain polar amino acids able to ����

be re-oriented at the surface of the films. This provides a higher hydrophilicity. In this ����

context, Hoque et al. (2011a) indicated that protein hydrolysis could expose more carboxylic ����

group and amino group to the surface, which might then form hydrogen bonds with the water ����

molecules and lead to the higher hydrophilicity of the resulting films. Moreover, several ����

studies have shown that fish protein hydrolysates have excellent water holding capacity ����
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favored by the presence of polar groups such as COOH and NH2 generated by the enzymatic ��	�

hydrolysis. These polar groups have a substantial effect on the water absorption and ��
�

hydrophilicity (Wasswa, Tang, Gu, & Yuan, 2007; Kristinsson & Rasco, 2000). A decrease of �	��

WCA values has been similarly indicated by Hasanzati Rostami et al. (2017) for gelatin films �	��

incorporated with silver carp protein hydrolysates because of its high hydrophilic character. �	��

Abdelhedi et al. (2018) reported that the smaller WCA obtained for gelatin films added with �	��

smooth-hound peptides revealed their sensitivity against moisture. After 30 s, a slight �	��

decrease of WCA was revealed for control gelatin films and those containing CSPI and �	��

Purafect hydrolysate due to exclusively evaporation of the solvent in the surrounding �	��

atmosphere that was not saturated with the liquid vapor (25 °C, 50% RH). For Savinase �	��

hydrolysate enriched films, a higher decrease of WCA measured at 30 s was noted which �		�

explain the faster absorption of the water droplet into the film surface.  �	
�

In order to better understand the effect of CSPH incorporation on the gelatin films �
��

surface properties, the surface tension, besides its polar and dispersive components, were �
��

determined using two other liquids (ethylene glycol and diiodomethane) and results are given �
��

in Fig. 4B. The shape of droplets deposited at the films surface are shown in Fig. 4C. Relative �
��

contact angles values between the film surface and the solvent remained approximately �
��

constant during 30 s (data not shown). Results presented in Fig. 4B displayed that control �
��

gelatin films showed the highest dispersive component (35.8 mN/m) and the lowest polar �
��

component (2.17 mN/m). Similarly, CSPI enriched films presented similarly a low polar �
��

component (2.35 mN/m) but lower dispersive component (20.67 mN/m) compared to gelatin �
	�

films. After CSPH incorporation, the surface tension of incorporated films showed �

�

modification due to the concomitant increase of polar component (16.04-22.55 mN/m) and ����

the decrease of dispersive component (20.61-23.91 mN/m). Thus, the CSPH addition ����

increased the wettability of gelatin films. ����
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3.2. Antioxidant activity of films ����

The antioxidant activity was generally determined by different techniques that ����

involved direct or indirect measurement of the rate/extent of formation/decay of free radicals ����

(Antolovich, Prenzler, Patsalides, McDonald, & Robards, 2002). Indeed, the different assays ����

used for measuring the antioxidant activity are based on the fact that oxidation is largely ����

inhibited by the capture of initiating or propagating free radicals in the autoxidation process. ��	�

Therefore, they focus on monitoring the capacity of additives for radical capture or inhibition ��
�

of radical formation rather than on monitoring the actual oxidation itself (Benbettaïeb, ����

Debeaufort, & Karbowiak, 2018). ����

Three assays were conducted in order to evaluate the effect of CSPH and CSPI ����

incorporation on the antioxidant potential of gelatin films and to define the different ����

mechanisms of action of these additives (Fig. 5): reducing power, free radical-scavenging ����

activity (DPPH) and � -carotene bleaching inhibition.  ����

First, the ability of CSPI and CSPH enriched films to reduce ferric ion (Fe3+) was ����

investigated and data displayed that incorporated films exhibited higher activity than control ����

gelatin film (OD700nm = 0.30) (Fig. 5A). The slight increase of the reducing power regarding ��	�

the enriched films was found to be more significant for those incorporated with CSPH. ��
�

However, the reducing activity of CSPH and CSPI in their free form was more important than ����

enriched films. These results could be explained either by the delayed release of the active ����

molecules from the gelatin film matrix or by the interactions established between the gelatin ����

and the active molecules in the film, which limited their release. Similarly, Giménez et al. ����

(2009) reported that squid gelatin hydrolysates showed lower antioxidant capacity in the ����

gelatin films than in the free form at the same amount added into the filmogenic solution ����

probably due to interactions between the peptides and gelatin film matrix formed via ����

hydrogen bonding.  ����
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 Moreover, the antioxidant activity of gelatin films was highlighted by the DPPH free ��	�

radical-scavenging assay (Fig. 5B). Control gelatin film showed the lowest antioxidant ��
�

activity (39.88%). Whereas, the addition of CSPH and CSPI interestingly increased the ����

antioxidant capacity of gelatin films. Savinase and Purafect hydrolysates enriched films ����

displayed the highest radical scavenging activity (75.01% and 68.66%, respectively), ����

followed by CSPI enriched films (61.48%). This difference in the antioxidant activity ����

between enriched films could be ascribed to differences in film pore size which could affect ����

the amount of released compounds. In addition, it has been reported that the release of active ����

compounds from polymeric matrices is influenced mainly by the properties of both the ����

polymer and the active compound (López-de-Dicastillo et al., 2011). Moreover, the nature of ����

films seems to have as well a significant effect on films bioactivity and the blend film was ��	�

found to accelerate the release of the bioactive molecules from the film matrix (Abdelhedi et ��
�

al., 2018). In the free form, CSPI displayed the highest radical scavenging activity followed ����

by Savinase and Purafect hydrolysates. Indeed, the difference in protein hydrolysates and ����

isolate activity may be related to the difference in their molecular weight and to their ����

solubility in ethanol solution. CSPH showed higher antioxidant activity in the film matrix ����

than that in the free form. Indeed, the formation of protein-protein interactions or hydrogen ����

bonding between the film network and the added peptides may affect the antioxidant activity ����

of CSPH enriched films (Giménez et al., 2009). As the DPPH-radical scavenging assay is ����

based on the electron donating and hydrogen-bond donor properties, both of the CSPH ����

molecules and the presence of hydrogen bonding in CSPH enriched films could explain the ��	�

higher antioxidant activity of CSPH added films compared to their respective free form ��
�

(Benbettaïeb, Debeaufort, & Karbowiak, 2018). ����

 Furthermore, the � -carotene-linoleate bleaching assay, which is based on the ����

disappearance of � -carotene color under thermally-induced oxidation (50 °C), was used to ����
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evaluate the lipid peroxidation inhibitory activity of gelatin films. As shown in Fig. 5C, all ����

gelatin films prevent � -carotene bleaching by donating hydrogen atoms to peroxyl radicals of ����

linoleic acid. Control gelatin films exhibited the lowest antioxidant activity (29.42%) which ����

increased significantly and reached 52.75%, 48.63% and 44.12% with the addition of CSPI, ����

Savinase and Purafect hydrolysates, respectively. A low � -carotene bleaching inhibition ����

activity (20.35%) was also reported by Jridi et al.(2019b) in the case of grey triggerfish skin ��	�

gelatin films. Regarding the free form, CSPI, Savinase and Purafect hydrolysates displayed ��
�

high � -carotene bleaching with percentages of inhibition of 96.79±0.55%, 95.03±0.34% and ����

90.08±1.14%, respectively. Thus, CSPH and CSPI contain probably hydrogen or electrons ����

donating peptides that are able to stabilize the free radicals. However, the higher antioxidant ����

activity of active molecules in the free form suggest that it will be better to use CSPH or CSPI ����

directly in foods rather than to incorporate them into packaging due to their delayed release. ����

Natural antioxidant activity was similarly reported for fish gelatin based films from ����

different species (sole, catfish or cuttlefish), which has been mainly attributed to the peptide ����

fraction of such protein, probably elaborated during the gelatin extraction process (Gómez-����

Estaca, Giménez, Montero, & Gómez-Guillén, 2009; Jridi et al., 2017). ��	�

4. Conclusion ��
�

 This study investigates the effect of CSPH incorporation in gelatin films properties. ����

The addition of CSPH led to colored films with lower homogenous microstructure, higher ����

UV-barrier property and Tg values, compared to CSPI enriched film. However, mechanical ����

properties and hydrophobicity decreased for CSPH added films compared to gelatin and CSPI ����

enriched films. Furthermore, the antioxidant activity of the resulting enriched films was ����

enhanced, suggesting their possible potential use as active packaging against packaged foods ����

oxidation. ����
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Table 1: Thickness, color parameters (L*, a*, b*, � E*), thermal properties (glass transition ��

temperature Tg, weight loss � w, thermal degradation temperature Tmax and residual mass), ��

mechanical properties (Tensile strength TS and elongation at break EAB) of CSG films and ��

those enriched by CSPI and CSPH. All films were previously stored at 25 °C and 50% RH for ��

the determination of the mechanical properties. ��

Film characterizations Control Film + CSPI 
Film + 
Purafect 

hydrolysate 

Film + 
Savinase 

hydrolysate 

Thickness (µm) 84.22±4.01a 79.34±6.07a 75.62±1.56a 77.45±1.34a 

Color 
properties 

L* 89.63±0.12a 85.73±0.42bc 86.27±0.25b 85.43±0.32c 

a* 0.37±0.12d 1.97±1.97c 2.20±0.10b 2.63±0.15a 

b* 3.63±0.23c 7.37±0.45b 7.40±0.10b 8.53±0.21a 

� E* / 5.72±0.57b 5.47±0.11b 6.94±0.07a 

Thermal 
properties * 

Tg (°C) 58.4b 59.5ab 71.4a 61.8ab 

� w1 (%) 14.3 10.9 12.8 12.4 

� w2 (%) 64.9 60.5 62.1 62.2 

Tmax (°C) 296.0 310.7 301.7 297.3 

Residue (%) 18.9 25.7 23.2 23.6 

Mechanical 
properties 

TS (MPa) 22.67±2.95a 22.09±0.46a 15.85±1.50b 12.29±0.47c 

EAB (%) 32.83±1.97a 26.26±3.51b 10.57±1.28c 10.32±1.39c 

Values are given as mean ± standard deviation. Means with different superscripts (a-d) within ��

a same row indicate significant difference (p<0.05) in terms of films samples. ��

* The average relative error on TGA data is lower than 5% 	�



 




