Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Subdivisions of Horned or Spindle Dupin Cyclides Using Bézier Curves with Mass Points

Abstract : This paper shows the same algorithm is used for subdivisions of Dupin cyclides with singular points and quadratic Bézier curves passing through infinity. The mass points are usefull for any quadratic Bézier representation of a parabola or an hyperbola arc. The mass points are mixing weighted points and pure vectors. Any Dupin cyclide is considered in the Minkowski-Lorentz space. In that space, the Dupin cyclide is defined by the union of two conics laying on the unit pseudo-hypersphere, called the space of spheres. The subdivision of any Dupin cyclide, is equivalent to subdivide two Bézier curves of degree 2 with mass points, independently. The use of these two curves eases the subdivision of a Dupin cyclide patch or triangle.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-03541207
Contributeur : Lionel Garnier Connectez-vous pour contacter le contributeur
Soumis le : lundi 24 janvier 2022 - 14:40:51
Dernière modification le : jeudi 4 août 2022 - 17:07:37

Lien texte intégral

Identifiants

Citation

Lionel Garnier, Lucie Druoton, Jean-Paul Bécar, Laurent Fuchs, Géraldine Morin. Subdivisions of Horned or Spindle Dupin Cyclides Using Bézier Curves with Mass Points. WSEAS Transactions on Mathematics, World Scientific and Engineering Academy and Society (WSEAS), 2021, 20, pp.756-776. ⟨10.37394/23206.2021.20.80⟩. ⟨hal-03541207⟩

Partager

Métriques

Consultations de la notice

10