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Abstract

This paper presents contributions of the ANR McBIM (Communicating Material for BIM) project regarding Digital Building
Twins, specifically how Semantic Web technologies allow providing explainable decision-support. Following an introduction
stating our understanding of a Digital Building Twin (DBT), namely a lively representation of a buildings' status and environ-
ment, we identify five main research domains following the study of main research issues related to DBT. We then present
the state-of-the-art and existing standards for digitizing the construction process, Semantic Web technologies, and wireless
sensor networks. We further position the main contributions made so far in the ANR McBIM project's context according to
this analysis, e.g., sensor placement in the communicating material and explainable decision-support.

Keywords Digital building twin (DBT) - Building information modeling (BIM) - IFC - Semantic web - Linked data -
Semantic interoperability - Wireless sensor networks - Concrete - Sensors

Introduction e Aligning with an increasing level of requirements related
to the environmental and societal issues such as protec-

The construction industry is involved in many domains: tion of vegetal and animal species, water management,

residential, industrial, civil structures, infrastructures such health, and safety for the workers on site.

as roads, rail, waterways, etc. Since the end of the twentieth

century, the European construction industry has been facing Consequently, construction projects are complex environ-

a double challenge. ments where multiple stakeholders must cooperate and inter-

act to create more and more intelligent structures. A "smart"

e Maintaining a high level of employment compared to  construction needs to manage more significant amounts of
other industries which automate and exercise redundan- data. This data must be monitored, registered, and struc-
cies while increasing productivity. tured to develop the services such as digital archives, data
analysis, and interpretation for prediction. The complexity of
information required for today's decisions for the construc-

This article is part of the topical collection “Advances on Signal tion industry requires digital techniques. Consequently, there
Image Technology and Internet based Systems™ guest edited by are considerable investments in digitization at the national,
Albert Dipanda, Luigi Gallo and Kokou Yetongnon. regional, and global levels, along with a need for collabo-
59 Ana Roxin ration and interoperability between systems. Digital tech-
ana-maria.roxin @ubfc.fr niques do not ensure this happens seamlessly. The observed
Wahabou Abdou environment is traditionally modeled using GIS (geographic
wahabou.abdou @u-bourgogne. fr information systems), while the built environment is mod-
William Derigent eled using BIM (building information modeling). The tradi-
william.derigent @univ-lorraine. fr tional difference in granularity between these two perspec-

tives (GIS and BIM) is more and more vanishing. Use cases

LIB EAT7534, University Bourgogne Franche-Comité, Dijon, and perspectives converge and largely overlap. The models

F . .
s rance from the two domains are tightly bound to each other. Every
ISRAN CNRS UMR 7039, University of Lorraine, Nancy, built construction has a location in the existing environment,
rance
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the Earth (if we do not consider outer space), and GIS incor-
porates all built environments. Each of these two domains
spends huge investments in capturing information from the
other domain—today, mainly resulting in double-spending.
The removal of the barriers to sharing information across
disciplines will save significant investments and result in
higher quality information.

In line with this, the construction industry has already
embedded in its processes the management of vast amounts
of digital data for investigating and describing existing con-
ditions, monitoring traffic, toll systems, or operation. Many
sensors are already widely used in Europe to report in real-
time the information related to mobility. State-of-the-art
technology offers multiple data sources, sensors, and ana-
lytic engines to automate and improve the process. However,
instead of each individual monitoring their small area of
responsibility, sensors should have the capability to commu-
nicate with each other and, in real-time, draw the picture of
the whole building as it exists at a specific moment in time.
This is the understanding we have of the Digital Building
Twin (DBT) concept.

Following this definition (DBT as lively representations
of buildings' status and environment), this article presents
the contributions made in this field and in the context of the
McBIM project, started in 2017 and funded by the French
National Agency of Research (ANR). The article comprises
three main sections: “Research Issues for Digital Build-
ing Twins” summarises research issues regarding DBTs
to identify the main related research domains. For each of
these domains, “Standards and State-of-the-Art Approaches
for Digital Building Twins” provides the state-of-the-art,
namely existing standards for digitizing the construction
process, latest advances in Semantic Web technologies, and
wireless sensor networks. Section “Pushing Forward the
State-of-the-Art: The ANR MCBIM Approach” presents
the contributions envisioned by the ANR McBIM project,
namely explainable decision-support based on real-time sen-
sor data integrated into a digital building representation.

Research Issues for Digital Building Twins

Now in the twenty-first century, the construction domain
faces an increasing number of challenges. Among those we
may cite.

e The growing competition to win control over construc-
tion data and information among the stakeholders pre-
sent, including asset managers and operators.

e The general tendency to develop and implement digital
environments for monitoring the "connected humans"
present in each territory e.g., "smart cities".
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e The necessity to provide innovative structures and ser-
vices to dramatically decrease the carbon impact in the
construction and operation phases.

Following our definition of the DBT, and considering
the above challenges, we divide the research issues into the
following categories. Each category pertains to a different
domain, and the related state-of-the-art is provided in the
specific sub-sections of “Standards and State-of-the-Art
Approaches for Digital Building Twins” mentioned below.

The first domain is building information modelling
(BIM). The recent advances in this field, emphasizing
effective information management, have dramatically
improved delivery and performance efficiencies by catalys-
ing increasingly innovative ways of working in construction.
Implementing BIM open standards allows better strategic
decisions and improved predictability through better risk
management. Section “Digitizing the Construction Process:
Standards for Digital Building Twins” provides an overview
of existing BIM open standards.

While digital tools and technologies handle complex
information exchanges in the construction domain, digitali-
zation does not automatically ensure interoperability. Exist-
ing software implementations of open BIM standards high-
light the growing need for collaboration and interoperability
among those systems. Today, in the context of a construction
project, only syntactic interoperability can be reached, which
constrains every actor to use the same software. Still, issues
arise whenever an actor uses a different software or tool to
query or produce information, whatever form such informa-
tion may take (models, spreadsheets, drawings, certificates,
programs, etc.). Indeed, construction projects are complex
systems that require an intensive collaborative effort from
all stakeholders involved, along with a complete understand-
ing of the cause and effect of all inputs. Without these, it is
impossible to identify deviations from the plan early on,
let alone implement corrective actions and prevent adverse
outcomes. Efficiency, safety, and accuracy in construction
projects require a common understanding of the information
exchanged. Thus, the second domain is semantic interopera-
bility and the challenges related to its implementation among
actors, tools, and technologies as involved in a construction
project. Indeed, a design DBT differs from a construction
DBT, which differs from a Facility Management DBT. Still,
all the underlying digital models must be synchronized per-
sistently, and interoperable information exchange must be
ensured among stakeholders. Section “Achieving Semantic
Interoperability—Definition and Problem Statement” further
explains what is understood by semantic interoperability and
how it can be implemented.

The third domain pertains to Semantic Web technologies.
Indeed, another issue for DBTs is to capture all the knowl-
edge related to the construction processes themselves and
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allow this knowledge to be handled by machines in (semi-)
automatic ways. While today ICT systems allow storing BIM
data and associating it with context elements (thus obtain-
ing BIM information), they fail in providing the flexibility
and the reasoning needed for lean decision-support. This is
mainly because most of this knowledge is implicit and per-
taining to human experts. Ontologies (as formal and explicit
specifications of shared domain conceptualizations) allow
integrating data and information from infinite data sources
and information models and reasoning on such structures
(making explicit knowledge from implicit knowledge). The
flexibility, expressiveness, and the ability to explain all the
deductions made have allowed ontology-based approaches
(using Semantic Web technologies and Linked Data princi-
ples) to be identified as the only type of approach to address
interoperability issues mentioned above [1] comprehen-
sively. Section “Semantic Web Technologies for BIM and
IoT” provides a review of such existing approaches as imple-
mented and sometimes pushed at the level of standardization
organizations.

After capturing underlying knowledge, the next step is to
integrate building monitoring and analysis data, as provided
by sensors deployed in the building. The fourth domain is
wireless sensor networks (WSN). Our vision of a DBT goes
beyond WSN, pushing the idea of materials that can com-
municate with their environment, sense it, and measure their
internal physical states. It exploits the evolution of the Inter-
net of things, leading to an increasing "sensorization" of
physical spaces. In our vision, a DBT must be able to reason
about its status and surrounding environment. Integrating
sensor data with BIM models allows digitally representing
physical and functional characteristics of physical spaces
and, thus, provides relevant information about the building.
Reusing the concept of "communicating material" (coined
by CRAN in 2010 [2], our vision is entirely in line with the
above idea of "smart cities", as DBTSs must be aware of their
environment and their status. Section “Data Dissemination
and Energy Efficiency in WSN” summarizes state-of-the-art
approaches existing in WSNs for ensuring data dissemina-
tion and energy efficiency.

Thus, to ensure semantic interoperability, sensor data
are integrated into the DBT through ontologies. Analysis of
such data as support of decision-making processes is imple-
mented on top of such ontologies using logical rules and
constraints. Explainable decision support is the fifth domain
addressed by the McBIM project. Section “Specifying
Expert Knowledge” presents how Semantic Web technolo-
gies ensure expert knowledge and how semantic rules can
help implement explainable decision-support functionalities.

With the above issues in mind, this article presents how
the French National Research Agency-funded ANR McBIM
project helps push forward the state-of-the-art to provide an
implementation for our vision of the DBT. Before submitting

our contributions, the sections below further explain the
existing approaches related to the issues listed above and
provide a review of current standards applicable in the
related domains.

Standards and State-of-the-Art Approaches
for Digital Building Twins

Before describing the research orientations took in the con-
text of the ANR McBIM project, this section will resume
primary existing standards and approaches about the issues
tackled by the project, namely: (1) digitizing the construc-
tion process, (2) achieving semantic interoperability, (3)
semantic web technologies and their applications for BIM
and IoT, (4) WSN: algorithms for data dissemination and
approaches for energy efficiency and (5) specifying expert
knowledge using semantic rules.

Digitizing the Construction Process: Standards
for Digital Building Twins

Digitizing the construction process has been addressed
through different standards, at different levels e.g., interna-
tionally with the ISO, European-wide in the context of CEN,
and national-wide in national chapters such as the French
AFNOR and the German DIN. Most of the existing stand-
ards are difficult to implement today. This is either because
they do not have a computer-defined implementation process
(e.g., the ISO 19650 standard family), or because they lack
interoperability with other existing standards (as an example,
at the level of the ISO TC59/SC13 a 14th Joint Working
Group has been created for tackling interoperability issues
among BIM and GIS systems). This section presents these
standards.

First and foremost, ISO 19650-1 (published in December
2019) provides the base definition for BIM: "Use of a shared
digital representation of a built asset to facilitate design,
construction and operation processes to form a reliable basis
for decision-making" [3]. Much more than a 3D model,
BIM is considered a process for sharing information along
design, realization, and operation phases. ISO 19650-2 [4]
provides a clear view of the process of information deliver-
ing in a digital building twin context: the client specifies (a)
the Asset Information Model (AIM) or the "as-built" or "as
maintained" asset, and (b) the Project Information Model
(PIM) or the system for delivering the information. These
specifications are related to the whole building life cycle,
covering its design, construction, and operation phases. Fol-
lowing a system engineering approach, one could define the
AIM as "the system to be delivered" and the PIM as "the
system for delivering". The idea of providing a "reliable"
mechanism for "decision-making" is crucial. It's also one
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Planning
6 — 12 months

Fig. 1 The building bricks of BIM: IDM, MVD and IFC [3]

of the main reasons Semantic Web technologies have been
widely recognized as enablers for such a mechanism.

In the context of the ANR McBIM project, we con-
sider BIM as a system that allows the generation, storage,
and exchange of information about building elements and
sensors. Such a BIM-based system goes beyond a simple
viewer of three-dimensional building models. Following
the assumption that a BIM system must enable "reliable"”
decision-making, the ANR McBIM system includes seman-
tic knowledge alongside building models. State-of-the-art
approaches in semantics for BIM are presented in the next
section (“Semantic Web Technologies for BIM and [oT”).
The ANR McBIM approach is discussed in section “Imple-
ment Explainable Decision-Support”.

In this section, we present the standards forming the
building bricks of BIM. They are illustrated in Fig. 1 [3]:

ISO 29481:2016 or "Information Delivery Manual" [5] is
the standard for describing actors and processes involved in
a contracted exchange. Following IDM, Exchange Require-
ments (ER) are specified, in the "building planning” phase,
in natural language by domain experts (or BIM users) and
software developers (or BIM providers). An ER defines what
kind of information must be included in the exchange. IDM
Process Maps (PM) are specified using Business Process
Model and Notation (BPMN) and usually include stakehold-
ers, project stages, and activities.

In the next building lifecycle phase, namely design, the
above informal IDM is adapted as Model-View Defini-
tions (MVD), which represent a subset of the complete IFC
Schema and are serialized in XML (mvdXML) [5]. Each ER
defined in an IDM is translated into specific concepts and
relations from the IFC Schema (see the paragraph below).
The goal of MVDs is to enable compliance and conformity-
checking of IFC files according to constraints defined in
IDMs.
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Construction, deployment
9 — 15+ months

ISO 16739:2013 "Industrial Foundation Classes" [6]
is the open BIM standard for representing buildings' con-
ceptual models. Following ISO 10303-21:2012 or STEP
(Standard for the Exchange of Product data) [7], IFC's main
serialization is EXPRESS. The *.ifc format is open, public,
and non-proprietary, promoted by the international stand-
ardization organization bSI (buildingSMART International).
The current version of IFC is IFC4.2, but IFC5 should be
made official by 2022.

The IFC Schema is divided into four main layers listed
below [8].

1. The Core Layer comprises the most general entity defini-
tions, each entity having a "globally unique identifier"
along with optional "owner and history information"

2. The Interoperability Layer defines entities specific to
different disciplines, in terms of general products, pro-
cesses, or resources, and provides the concepts and rela-
tions for exchanging and sharing construction informa-
tion among different domains (inter-domain)

3. The Domain Layer further specializes the element defi-
nitions from the Interoperability Layer and enables the
exchange of construction information in the context of
the same domain (intra-domain)

4. The Resource Layer includes the description of costs,
actors, quantities, constraints, approvals, etc. All con-
cepts from the Resource Layer do not have a "globally
unique identifier" thus they must be related to a concept
from the core, the domain, or the interoperability layer.

According to the IFC Schema, building elements gener-
alize elements present in a building and are modeled using
the IfcElement concept. Doors, beams, or walls represent
typical examples of building elements. An instance of IfcEl-
ement is assigned to a building's spatial structure (e.g. a



SN Computer Science (2022) 3:23

Page50f25 23

Table 1 IFC Pset_ConcreteElementGeneral [8]

Property Description

ConstructionMethod Designator for whether the concrete element is constructed on site or prefabricated. Allowed values are: 'In-Situ'
vs 'Precast’

StructuralClass The structural class defined for the concrete structure (e.g. '1")

StrengthClass Classification of the concrete strength in accordance with the concrete design code which is applied in the project

ExposureClass Classification of exposure to environmental conditions, usually specified in accordance with the concrete design

code which is applied in the project

ReinforcementVolumeRatio
concrete structural element

ReinforcementAreaRatio
concrete structural element

Dimensional AccuracyClass

The required ratio of the effective mass of the reinforcement to the effective volume of the concrete of a reinforced
The required ratio of the effective mass of the reinforcement to the effective volume of the concrete of a reinforced

Classification designation of the dimensional accuracy requirement according to local standards

ConstructionToleranceClass Classification designation of the on-site construction tolerances according to local standards

ConcreteCover
ConcreteCoverAtMainBars
ConcreteCoverAtLinks

The protective concrete cover at the reinforcing bars according to local building regulations
The protective concrete cover at the main reinforcing bars according to local building regulations
The protective concrete cover at the reinforcement links according to local building regulations

ReinforcementStrengthClass Classification of the reinforcement strength in accordance with the concrete design code which is applied in the
project. The reinforcing strength class often combines strength and ductility

TS SanaoT IfcRelDefines

ByType

Fig.2 Associating sensor types to IfcSensor instances using [FC4

building storey) using IfcRelContainedInSpatialStructure.
The property IfcRelDefinesByType allows setting an ele-
ment type to an IfcElement. IfcBuildingElement is the sub-
class of IfcElement representing tangible building elements,
some of which can be made of concrete (which is the focus
of the ANR McBIM project). Among those elements (sub-
classes of the IfcBuildingElement class), in the context of
the ANR McBIM project, we will focus on IfcBeam and
IfcWall elements.

Additional to classes, the IFC specification defines prop-
erty sets ensembles of property taxonomies. Users can add
missing properties from the Psets specified in the standard
[8], indicating they are not present in the standard by remov-
ing the "Pset_" prefix from those property names. Each of
the classes above (IfcBeam and IfcWall) implements the
three Psets for concrete or precast concrete elements, namely
Pset_ConcreteElementGeneral, Pset_PrecastConcreteEl-
ementFabrication and Pset_PrecastConcreteElementGen-
eral. As the ANR McBIM project will not consider precast
elements, we list in Table 1. The properties in Pset_Con-
creteElementGeneral, which are implemented in the context
of the project.

sIfcSensor is a newly added concept in IFC4 and repre-
sents a device that measures a physical quantity and converts

IfcSensorType

Predefined

Type Enum

IfcSensorType

it into a signal that an observer can read or by an instrument.
Using IfcSensorType with a value from IfcSensorTypeEnum
(listed below in t), several types of building sensors can be
specified into building data. Figure 2 illustrates the concepts
and relations that need to be instantiated to assign a sensor
type to an instance of IfcSensor (Table 2).

Achieving Semantic Interoperability: Definition
and Problem Statement

Before discussing this, one must first define what interoper-
ability is. ISO (International Standards Organization) pro-
vides several for "interoperability” depending on the domain
of knowledge or application considered. Following the defi-
nition provided by ISO/TC 46/SC 4 Technical interoper-
ability in ISO 21127:2014 [9], "technical interoperability"
implies that either "two systems can exchange information"
or that "multiple systems can be accessed with a single
method". From a computer science point of view, several
levels of interoperability are considered [10].

e Level 1 interoperability or physical interoperability is
defined as the "computation, use, transfer and exchange
of data" [11]
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Table 2 Sensor types defined in IFC4.1 [8]

Constant Description

COSENSOR A device that senses or detects carbon monoxide

CO2SENSOR A device that senses or detects carbon dioxide

CONDUCTANCESENSOR A device that senses or detects electrical conductance

CONTACTSENSOR A device that senses or detects contact, such as for detecting if a door is closed
FIRESENSOR A device that senses or detects fire

FLOWSENSOR A device that senses or detects flow in a fluid

FROSTSENSOR A device that senses or detects frost on a window

GASSENSOR A device that senses or detects gas concentration (other than CO2)
HEATSENSOR A device that senses or detects heat

HUMIDITYSENSOR A device that senses or detects humidity

IDENTIFIERSENSOR A device that reads a tag, such as for gaining access to a door or elevator
IONCONCENTRATIONSENSOR A device that senses or detects ion concentration, such as for water hardness
LEVELSENSOR A device that senses or detects fill level, such as for a tank

LIGHTSENSOR A device that senses or detects light

MOISTURESENSOR A device that senses or detects moisture

MOVEMENTSENSOR A device that senses or detects movement

PHSENSOR A device that senses or detects acidity

PRESSURESENSOR A device that senses or detects pressure

RADIATIONSENSOR A device that senses or detects radiation power
RADIOACTIVITYSENSOR A device that senses or detects atomic decay

SMOKESENSOR A device that senses or detects smoke

SOUNDSENSOR A device that senses or detects sound

TEMPERATURESENSOR A device that senses or detects temperature

WINDSENSOR A device that senses or detects airflow speed and direction
USERDEFINED User-defined type

NOTDEFINED Undefined type

e Level 2 or syntactic interoperability concerns the "abil-  these concepts, we will start from existing ISO definitions

ity of two or more systems or services to exchange  for "semantic interoperability” [10].

structured information" [12]

Level 3 semantic interoperability comes on top of the
two previous levels and, when implemented, enables
"the meaning of the data model within the context of
a subject area [to be] understood by the participating

e ISO 13606-1:2018 [14] defines it as the "ability for

data shared by systems to be understood at the level of
fully defined domain concepts". This definition points
to the first level of semantic interoperability, which is

systems" [13]

"understanding of data". Such understanding is usually
characterized as minimum semantic interoperability. It

These interoperability levels are interconnected, e.g. is enabled by approaches based on Resource Descrip-
implementing Level L's interoperability requires imple- tion Framework (RDF). In this case, only the minimum
menting interoperability of the level (L-1). Thus, reaching knowledge is modeled: the concept of a "building" is
semantic interoperability cannot be done without having related to the concept "sensor" through the relation "con-
implemented physical and syntactic interoperability. Physi- tains".
cal interoperability is solved using hardware standards (e.g. o ISO 16678:2014 [12] considers such interoperability as
Ethernet) and standard network protocols (e.g. TCP/IP or "the ability of two or more systems or services to auto-
HTTP). Syntactic interoperability has also been resolved matically interpret and use information that has been
through the specification and implementation of syntax exchanged accurately”. This definition places the need
standards such as XML, HTML, WSDL, or SOAP. for information interpretation, information being defined

When it comes to semantic interoperability, several fla- as contextualized data. This is called extended semantic
vors exist, each resulting in different actions that can be interoperability and requires minimum semantic inter-
performed on the underlying knowledge. To best apprehend operability (thus RDF). This is called extended semantic
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interoperability and requires minimum semantic interop-
erability (thus RDF). The RDF Schema language allows
defining a common interpretation of the elements con-
tained in the message exchanged. Following our previ-
ous example, with RDF Schema, the "building" concept
is identified by an URI (Unified Resource Identifier),
allowing a computer agent to dereference the concept
and access an RDFS-defined ontology specifying addi-
tional knowledge about a "building". Extended semantic
interoperability allows obtaining additional knowledge
about the concepts handled, but it does not allow to con-
straint such knowledge. Following our example, with this
level of interoperability it is impossible to specify that if
a "sensor" is in a "building", the same "sensor" cannot be
contained in a "different building".

e The definition from ISO/IEC 19941:2017 [13] point to
full semantic interoperability and requires higher-order
ontology description languages from the OWL family
such as OWL-DL, OWL 2 RL, etc. This level of inter-
operability allows bounding knowledge: allowed inter-
pretations represent the lower bound, while constraints
preventing specific inferences form the upper bound.
In the context of our "building" containing "sensors",
an incoherence would be notified if the same "sensor"”
instance is in two different "building" instances.

Regarding the digitalization of construction, engineer-
ing, and architecture (AEC), the French expert commission
PTNB identified Linked Data and Semantic Web technolo-
gies as the only approach that fully addresses interoperabil-
ity issues in these domains [1]. Thus, the next section briefly
presents knowledge modeling with Semantic Web standards
and the main existing ontologies pertaining for digital build-
ing twins.

Semantic Web Technologies for BIM and loT

In the last decade, Semantic Web and Linked Data technolo-
gies have received increasingly more attention to facilitating
knowledge modeling in the AEC/FM sector. Since then, the
topic of using semantics for delivering actionable knowledge
has continuously gained attention from both researchers and
industrials. This section's scope is not to provide a state-
of-the-art regarding Semantic Web, but to list and describe
main conceptual differences associated to knowledge mod-
eling with Semantic Web languages such as RDFS or OWL.

Indeed, modeling with Semantic Web languages is dif-
ferent than object-oriented modeling. For example, in the
EXPRESS language (used for serializing IFC), all the
concepts are related to one single key or primary (meta-)
concept. In EXPRESS, a property is always declared in the
context of an entity. With Semantic Web languages, classes
and properties are defined independently. The belonging of

an instance to a class is determined by the set of necessary
and sufficient conditions that the individual must observe.
In the context of Semantic Web, a class is defined as an
ensemble of properties its individuals must all implement,
with specific values. Another difference in semantic mod-
eling is the Open World Assumption (OWA), which states
that it is not because some knowledge is missing or was not
specified that it must be assumed as false. In EXPRESS,
what is not specified is by default assumed false—it is called
a Closed World Assumption (CWA). In Semantic Web, the
assumption that applies is the No Unique Name Assumption
(UNA). Indeed, Semantic Web handles resources identified
by means of URIs (Unique Resource Identifiers). It is only
if two URIs are identical, that the resources they identify
are considered identical. In the context of BIM (namely in
IFC files), resources are identified by means of so-called
GUIDs (Globally Unique Identifiers) that usually contain
UUID data. The main issue with this approach is that these
GUIDs are not unique from one IFC file to the other. This is
mainly justified by the freedom of implementation provided
by the IFC standard for software companies. Identification
using URIs as implemented in the context of the Semantic
Web allows waiving the issues related to UUIDs.

Several ontologies exist and allow modeling and anno-
tating data in digital building twins, namely building, sen-
sor, urban and geographic data. They are listed and briefly
described in the table below (see Table 3). More details
about these ontologies, the Linked Data principles [15] they
respect, along with an evaluation of their modeling quality
can be found by the reader in [16].

Data Dissemination and Energy Efficiency in WSN

Several research initiatives underlined the benefits of
integrating Internet of things technologies such as RFID,
WSN into construction products and an extensive review
of research works or industrial initiatives in the construc-
tion domain using RFID technologies. These approaches
show that RFID technologies have been tested and can
bring significant economic leverages in all the phases of the
precast concrete lifecycle, e.g. in precast quality manage-
ment [17] or for construction supply chain [18], by bringing
product information to stakeholders. Additionally, WSNs
are also seldom used when active monitoring of the struc-
ture is needed as in manufacturing (for early-age concrete
inspection as in [19]) or for structure health monitoring
[20]. Industrial initiatives are also numerous, but RFID tags
are used most of the time [16]. For example, we may cite
Lafarge, who integrated RFID tags directly into the concrete
of the D2 tower! for traceability applications.

! https://skyscrapercenter.com/building/d2-tower/9831.
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Data dissemination in a wireless sensor network (WSN)
relies on cooperation amongst nodes. Given that each sen-
sor node has a limited transmission range, some intermedi-
ate nodes could act as relays to enable extensive network
coverage. A WSN is considered a set of nodes equipped
with wireless communication interfaces that work together.
Concerning energy in WSN, a lot of research works have
been proposed in the last two decades. Following the top-
down survey for energy efficiency in WSNs [21], Fig. 3
introduces various ways to address this issue.

If all categories can be explored to improve energy
efficiency, in ANR McBIM we focus on data dissemina-
tion across the network. Some protocols are based on RPL
(Routing Protocol for Low-Power and Lossy Networks)
[21]. In [22] the authors proposed an RPL-based routing
protocol (named PriNergy) that meets the quality-of-ser-
vice requirements, avoids network congestion, and seeks
for energy-efficiency. Tita et al. [23] proposed a protocol
that uses two-hop information to improve the performance
of WSNs in terms of energy and quality-of-service. They
introduced two metrics: (1) the potential relay information
(PRI), which considers the residual energy, the distance,
the delay, and the quality of the links to neighbour nodes,
and (2) the neighbourhood state index (NSI) algorithm,
which helps reducing delay and load traffic. Some proto-
cols use optimization techniques to improve clustering in
WSNs. The authors of [24] used the MOA (Mayfly Opti-
mization Algorithm) [25] to efficiently select the cluster
heads (CH). This approach considers energy, position, and
distance when choosing a CH. To optimize the network's
overall energy, a rotation of the CH role over time is con-
sidered. Other techniques were explored in works like
energy harvesting [17] or data reduction [26].

Routing is an essential task in WSN communications.
Routing protocols allow finding paths to transport data
from a source to a destination (e.g., the sink). A path is
made up of the list of intermediate nodes. According to
[27], WSN routing protocols are classified according to the
network structure or the protocol operations (see Fig. 4).
Various communication technologies like IEEE 802.15.4
(ZigBee), IEEE 802.11 (Wi-Fi), IEEE 802.15.1 (Blue-
tooth Low Energy), and so on can be used to transmit data

Relation to standardization organization
W3C Recommendation since 9 April 2020
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Fig.3 Approaches addressing energy efficiency in WSNs (adapted from [21])

Fig.4 Classification of WSN
routing protocols [27]

WSN Routing
Protocols

LEACH (Low Energy Adaptive Clustering Hierarchy)
[28] is one of the most popular WSN clustering protocols.
Clusters are computed in a distributed way. A probability
p is calculated for selecting cluster heads (CH), each node
selecting the CH with whom it can communicate with the
minimum energy. Any node can endorse the CH role over
time to best distribute the traffic load and energy con-
sumption. PEGASIS (Power-Efficient Gathering in Sen-
sor Information Systems) [29] proposes an improvement
of LEACH. It forms a chain amongst nodes and favors
communications between closest neighbors. The Chain-
Cluster-based Mixed routing protocol (CCM) [30] relies
on LEACH and PEGASIS benefits, especially latency
and energy consumption. CCM forms routing chains and
selects a head (amongst chain heads), sending aggregated
data to the sink. Chain-Routing-Based on Coordinates-
oriented-Cluster (CRBCC) [31] is another cluster-based
routing protocol. Nodes are grouped depending on their
geographical coordinates. The clusters are formed based
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Network

Location-based
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Negotiation-based
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Query-based
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Table 4 Comparison of WSN routing protocols [66]

Protocol name  Energy Mainte- Resilience to  Scalability
efficiency nance cost link failure

LEACH - + + -

PEGASIS - - - -

CCM + - - -

CRBCC + + + -

BCBRP - - ++ -

on the Y coordinate, and the algorithm forms a chain
within each cluster and elects a leader for each chain. Bal-
anced Chain-Based Routing Protocol (BCBRP) [32] is
another data dissemination protocol that aims to extend
the lifespan of the sensor nodes. It relies on three steps: (1)
split the network into several subnetworks with equal size,
then (2) select a bridge node within each subnetwork, and
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Fig.5 Illustration of semantic
annotation in the interpretation
of IFC data [54]
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finally (3) build a chain that interconnects the subnetworks
via the bridges. Table 4 summarizes the advantages of the
common WSN routing protocols.

Usually, sensor nodes are battery-powered. The batter-
ies could be hard to recharge or replace (because WSN
could be deployed in hostile environments). Therefore,
energy efficiency is a critical issue in this kind of network.

Nodes consume energy to send or receive messages and
for carrier listening. Reducing the transmission power can
lead to less energy consumption when sending messages.
However, this method reduces the transmission range,
increases the number of hops, and lengthens the paths.
Energy could also be saved by arranging nodes to not
remain active during the hole monitoring time. The sensor
nodes will alternate the active and inactive (sleep) modes.
The alternating of active/inactive modes is referred to as
the duty cycling approach.

Duty cycling is an effective energy conservation mech-
anism in WSN. The lower the duty cycle, the longer a
node is idle and saves energy. This lengthens the network
lifetime. The duty cycle can be applied to all subsystems
of a sensor node, including the radio communication sub-
system. When they are actives, nodes can send or receive
messages or simply listen to the radio channel. Inactive
listening (idle) can represent a significant consumption of
energy over time. Two common phenomena favour duty
cycling. First, it exploits the redundancy in wireless sen-
sor deployment [3]. The system can thus adaptively select
only a minimal subset of nodes that will remain tempo-
rarily active to maintain connectivity. Second, it exploits
the fact that in most applications, occurrences of events
are rare. Most of the time, the nodes are listening to the
channel. In other words, the selected subset of nodes must
not be active all the time. Moreover, these protocols auto
organizing the network are led by nodes considering their
own or a local view of the network. These decentralized
decision-making protocols are interesting locally but could
be sub-optimal for the whole network.

Y

ifc:ifcThermalConductivityMeasure

Identifier on the Web of the concept of
"thermal conductivity" as defined by IFC4.1

Specifying Expert Knowledge

Integrating expert knowledge in data processing allows
delivering a better understanding, thus handling such data.
For addressing this, Semantic Web standards allow defin-
ing metadata (descriptions of the data) and constraints,
thus supporting reasoning processes on top of the gathered
data. Such approaches are beyond state-of-the-art today,
as they have been proven efficient through implementation
[3]. To support this claim, two references can be cited: (1)
the IfcWoD (Web of Data) adaptation of ifcOWL, which
allows almost 90% reduction of query execution times [33]
and (2) the federation approach exploiting the FOWLA
architecture [34] allowing to interoperate the COBieOWL
[35] and ifcOWL ontologies (as provided by build-
ingSMART [1]). Using the ifcOWL ontology correspond-
ing to the IFC version of the building data exchanged, one
can annotate such data and ease its interpretation both by
humans and machines (as illustrated in Fig. 5).

When applying Linked Data principles [15] to define
semantic links among those ontologies and vocabularies,
it is possible to create a so-called knowledge continuum
(through explicit semantic links specified among their con-
cepts and relations). Such combined knowledge becomes
a conceptualization of the application domain considered.
Semantic Web languages allow an adequate expressivity
level for such conceptualizations, while maintaining the
overall system's efficiency. On top of such conceptualiza-
tions, a set of semantic rules can be defined, corresponding
to the expert "know-how". Contrary to machine learning
approaches, semantic rules are based on description log-
ics and enable tracking and constraining how the expert
system rules. Such methods are called programmed or con-
strained reasoning. They must be implemented in Al-based
systems where the deductions must be explainable to the
human user (see Fig. 6).

Not only can one implement constrained reasoning on top
of such modeled knowledge but semantic rules also allow
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Fig. 7 Using semantic rules to define the concept of a building envelope

defining concepts missing in the considered ontologies. For
example, the IFC specification does not hold a building
envelope concept, meaning all elements of a building that
have an isExternal property defined in the related IFC data.
The rules illustrated below (Fig. 7) demonstrate how one
can use semantic rules to describe this missing concept [36].

Furthermore, such rules allow specifying building
abstractions corresponding to existing Levels of Detail
(LOD) or some specific expert needs. Authors in [37] have
defined and implemented an approach based on semantic
rules that can extract the exact sub-portion of an IFC file
following an ensemble of provided elements e.g., either
GUIDs, or relation or concept names.

Lead by LIB (Laboratory of Computer Science of Bur-
gundy), WP4 from the ANR McBIM project will compose
and specify constraints and rules about expert knowledge
in structural health monitoring in construction and exploi-
tation phases. Based on this, WP4 will provide methods
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to implement semantic compliance checks at these two
building lifecycle phases, thus allowing to specify human
knowledge and experience in a computer-processable way.
Sections “Implement a Standard-Compliant Solution” and
“Implement Explainable Decision-Support” further detail
developments done in the context of this WP.

Pushing Forward the State-of-the-Art: The
ANR McBIM Approach

With a consortium of academics and industrials, ANR
McBIM focuses on the construction industry's need for new
standards and methods for material tracking and recycling.
In this project's context, we consider ontological approaches
for constraint checking, following consistent information
taxonomies and protocols and processes for information
exchange, conforming to the concepts and principles defined
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Fig.8 The overall vision of the
ANR McBIM project
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in the ISO 19650 standard family [3, 4, 38—40]. More spe-
cifically, the ANR McBIM project aims to design a "com-
municating concrete", meaning embed concrete building
elements with sensors and integrate the sensed data into the
BIM platform, thus delivering an interoperable digital build-
ing twin (see Fig. 8).

The project exploits the benefits of "communicating con-
crete", namely:

a. its data storing capacity allows them to convey informa-
tion related to design, manufacturing, and logistics, val-
uable during these lifecycle phases or BOL (Beginning
Of Life), but also during EOL (End Of Life), meaning
building demolition and recycling;

b. its sensing and processing capacities, practical during
MOL (Middle Of Life), representing operation and
maintenance lifecycle phases.

Two building lifecycle phases are considered for imple-
menting and testing the considered approach, namely con-
struction and exploitation phases (for structural health
monitoring).

Still, before reaching this vision, several additional chal-
lenges must be tackled for integrating real-time sensor data
with BIM models. Indeed, open BIM standards do not pro-
vide capabilities to process real-time data, as do those sup-
plied by sensors in smart environments. Some of the spe-
cific challenges are (a) extracting knowledge out of BIM,
using the Industry Foundation Class (IFC) standard [6], (b)
ensure real-time processing and reasoning over sensor data.
Many approaches have been proposed to solve these chal-
lenges by integrating BIM with real-time data. However,
most of them lack practical validation or are highly depend-
ent on domain specifications. Attempts are related to the
development of applications concerning specific applica-
tion domains, namely (1) energy management, (2) building
automation, (3) fire control, (4) health and safety, (5) safety
risk, and (6) augmented reality (AR), and therefore they

1 Wireless Sensor Network Electrical routing
o~ « Sensing » node (B
P TN - RF harvester p , :
A 1/ -7 Only battery powered )
. ]

l‘\» B l M 7 Interoperate via
{ \g\Bl M Standard

Communication with
other McBEAMS

cannot be considered as standard solutions, adaptable to a
large class of application domains. These facts reveal a lack
of a standard solution for combining BIM with real-time
data that streamlines the creation of sophisticated solutions
to leverage sensor data with complex characteristics of the
built environment.

For addressing these challenges, ANR McBIM provides
means to relate the physical world (e.g. the building element
made of concrete) to the digital world (e.g. the data associ-
ated with this particular building element). For collecting the
data, in the project's context, we use a WSN embedded into
the concrete and composed of two types of nodes: the sens-
ing nodes (SN) and the communicating nodes (CN). These
are illustrated in the figure below (see Fig. 9). Sensing nodes
are in charge of capturing the building element's physical
values (e.g. temperature, moisture) and relaying them to the
communicating nodes. SNs are powered via RF harvesting
techniques. The communicating nodes have more capabili-
ties and are battery-powered. They can communicate with
each other and with the digital world (e.g. as a gateway).
This architecture allows obtaining the values used for imple-
menting explainable decision-support, as described in sec-
tion “Implement Explainable Decision-Support”.

In the context of the ANR McBIM project, we seek to
conceive and implement a solution for integrating BIM with
sensor data. The following objectives are therefore pursued:
(1) consider an updated building model, (2) integrate data
from multiple sensors, (3) resolve queries that combine sen-
sor with building data, (4) produce answers for those que-
ries in real-time in terms of the sensor data processed, and
(5) over a clean, easy-to-use, and simple interface to the
user. As mentioned in the introduction, this is a different
concept from BIM, notably from the goals pursued. Indeed,
while BIM only renders the elements in an IFC file, a digital
building twin must integrate real-time data, mainly obtained
from sensors integrated into the building. Moreover, as it is
an ongoing project, not all the objectives above have been
reached. The article at hand focuses on the use of ontologies
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Fig.9 Communication among
sensor nodes in the WSN con-
sidered for ANR McBIM [17]

<+

for seamlessly integrating data gathered from sensors into
building data. Sections below examine in more detail points
(2) to (4) from the objectives listed. Sections “Designing
Robust Wireless Communications” to “Reorganizing the
Sensors” further discuss details regarding sensor commu-
nication, placing, and reorganization. Section “Implement
a Standard-Compliant Solution” details the structure of the
McBIM ontology and its relationship with existing stand-
ards applying in the context of BIM. Finally, “Implement
Explainable Decision-Support” illustrates how the standard
ifcOWL ontology can be used for implementing monitoring
of specific building elements.

Designing Robust Wireless Communications

When sensor nodes are deployed in hostile or difficult-to-
access environments, they should be designed to operate
autonomously. In the framework of the McBIM project,
human interventions to manage the sensor nodes after they
have been poured into concrete will be very difficult. The
autonomic computing paradigm allows self-management.
Self-management systems with limited human interven-
tions allow to cope with complex management systems and
reduces the overall maintenance costs. Systems become a
collection of interconnected autonomous entities. The auto-
nomic computing paradigm is inspired by the autonomic
nervous system. The main objectives for autonomic systems
are self-configuration, self-healing, self-optimization, and

SN Computer Science
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self-protection (also known as self-chop). These objectives
have been recently extended [41]. To ensure self-chop prop-
erties, autonomous systems must be able to interact with
their environment thanks to sensor and effector modules. In
addition, they must have a knowledge base that can be made
up of a simple configuration rules or enriched by artificial
intelligence algorithms. The interaction with the environ-
ment must be continuous. It makes it possible to adapt to
changing contexts. The overall working process of such a
system is described by a closed control loop [41] (illustrated
by Fig. 10).

Autonomic Manager

Analyze l:> Plan
- Sy "

Knowledge \ t
Database \\ execute :

Effectors

Sensors
( Managed element )

Fig. 10 Illustration of the interactions between an autonomous ele-
ment and the knowledge base
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Sensor Placing in the Communicating Material

The sensor nodes will be poured into the concrete to monitor
specific areas of a wall. These areas are called targets. Sensor
nodes should be as a priority around the targets. Redundancy
can help to extend WNS lifetime (using duty cycling) and
make up a fault-tolerant system. Figure 11 illustrates sensor
deployment around the targets to form a connected network.
Figure 12 shows how sensor placement can be modified to
provide interconnection and act as relay nodes. The sensor
placement around specific areas is like the target monitoring
problem [42].

The efficient deployment of sensor nodes can be defined
as a multi-objective optimization problem. Given a num-
ber of sensor nodes, the goal will consist of maximizing
the redundancy around the targets while guaranteeing the
network's connectivity (all the nodes must be able to com-
municate with each other directly or through relay nodes).
The problem can also be defined as determining the mini-
mum number of sensor nodes to cover all the targets and
then place a few sensors to ensure connectivity. Our early

works have provided promising results regarding target cov-
erage based on evolutionary algorithmics [43] and stochastic
physics-based optimization algorithm [44]. In the context of
ANR McBIM, we seek to adapt these approaches, consider-
ing the concrete environment's specificities.

Reorganizing the Sensors

Again, as sensors are embedded into concrete, their lifetime
varies depending on the internal routing of sensor data in
the material. Thus, the issue is to adapt the routing strat-
egy of the communicating material to maximize the global
network lifetime. About this issue, the McBIM project
vision is to use the DBT to represent the network inside the
material (and not only the material itself). This WSN DBT
will then be used to estimate/simulate each node's residual
node lifetime of the network. This view corresponds to the
"Analyse" function of an autonomic manager. Based on the
system's node energy levels, centralized network organiza-
tion methods will then be used on global data, leading to
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Fig. 13 ANR McBIM approach for optimized routing structures [44]

optimized routing structures. This approach is presented
below in Fig. 13.

The left side of Fig. 13 shows the communicating con-
crete with sensor nodes inserted. These nodes send data
stored and analyzed in the concrete digital twin, in which a
virtual node represents each node. The middle of the figure
depicts the concrete digital twin (here a beam), in which the
virtual nodes are represented as colored spheres. As for the
real nodes, the virtual nodes are gathered in a network (links
between virtual nodes being represented in Fig. 13 as white
lines). The data sent by the real communicating concrete
feeds the different energy models contained in each node
[26]. Using these models, the concrete digital twin reports an
estimation of nodes' remaining energy levels, which are used
to evaluate the remaining network lifetime. Figure 13 depicts
a "concrete agent" that monitors the real concrete through
the digital representation built on its right side. When appro-
priate, the agent launches a reorganization process to explore
new routing strategies. If a better routing is found (i.e., a
design maximizing the concrete lifetime), the design is kept,
and reorganization orders are then sent to the WSN.

Implement a Standard-Compliant Solution

As mentioned in “Digitizing the Construction Process:
Standards for Digital Building Twin” and “Achiev-
ing Semantic Interoperability: Definition and Problem
Statement”, implementing the functionalities needed for
explainable decision-support while maintaining seman-
tic interoperability requires defining standard-compliant
ontologies (knowledge bases). Thus, the logic behind ANR
McBIM is enabled by the ANR McBIM ontology, which
uses concepts as defined in existing standards. Following
ISO 19650-1:2018 [3], a Common Data Environment ena-
bles "the development of a federated information model".
The project will provide a federated knowledge model for
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handling all knowledge related to the considered built asset,
considered construction works, and life cycle, along with
stakeholders' roles and requirements. Thus, ANR McBIM
uses an ontology that federates concepts defined in existing
standards and specified in separated modules. These mod-
ules are federated through semantic rules (defined in SWRL)
following the FOWLA approach presented in [34]. This will
be addressed in the context of the project's WP4, which will
determine the federation of existing schemas and models by
defining outgoing semantic links to concepts and properties
already present in other vocabularies (as listed in Table 3).
Reusing the FOWLA approach [34] enables a flexible solu-
tion while ensuring its efficiency regarding query execution
times. Indeed, FOWLA considers interoperable sub-schemas
among the assessed modules, thus maintaining the federa-
tion even if one module evolves (e.g. new concept added).
Moreover, the approach depicted in [45] allows improved
SPARQL query execution times by only selecting pertaining
SWRL rules [46].

Several modules (or schemas) will be considered for the
ANR McBIM ontology.

e The "standards module" will use concepts from ISO
19650-1:2018 [3] and ISO 29481 Parts 1 [5] and 3 [47]
along with the relations among them represented in
Fig. 14.

e The "concrete module" will explicitly define all charac-
teristics (e.g. those from buildingSMART Data Diction-
ary,” but also national working groups such as media-
Construct Masonry) and refer to existing classifications
for concrete (e.g. OmniClass 2013). Principles defined
in ISO 12006-2 [48] for information classification and
those from ISO 12006-3 [49] about attribute metadata
definition will be respected.

2 http://bsdd.buildingsmart.org/.
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Fig. 14 Standard concepts from ISO 19650-1, ISO 29481-1 and ISO 29481-3 considered by the ANR McBIM ontology

e The "actor module" will list all actors involved in ANR
McBIM processes regarding the actor terminology
defined in ISO 19650-2 [4]. According to ISO 29481-
1:2016 [5], an actor is a "person, organization, or organi-
zational unit (such as a department, team, etc.) involved
in a construction process". According to the different
processes specified in ANR McBIM, the following
actors are considered: the client, the delivery team, and
the task team. Following ISO 19650-2 [4], each of these
will either be an appointed party, or an appointing party,
according to the process and lifecycle phase considered.

e The "sensor module" will contain all necessary knowl-
edge about the sensors deployed into concrete. Align-
ments are provided to the main standard ontologies listed
in “Semantic Web Technologies for BIM and IoT”, while
also defining equivalency links to pertaining classes in
ifcOWL ontology for IFC4.1.

Following the study of Part 1 of the ISO 19650 standard
[3], ANR McBIM aims at implementing the information
delivery cycle defined by the standard. Namely, the follow-
ing steps have been considered.

1. Specify information requirements through organiza-
tional information requirements (OIR), asset information
requirements (AIR), project information requirements
(PIR), exchange information requirements (EIR)

2. Define planning for information delivery

3. Implement automatic compliance checking for informa-
tion approval, through the definition of (1) collaborative
information management processes as defined in ISO
19650-2 [4], (2) information review process (e.g. spatial
coordination, information compliance) as defined in ISO
19650-2 [4], (3) security-related best practices according
to ISO 19650-5 [40].

For doing so, we based our definitions on BPMN speci-
fications of the processes considered in the project context.
For each building element considered (e.g. IfcBeam or Ifc-
Wall), we envisaged the following lifecycle phases: design,
production, delivery (handover), operations, management,
and demolition. We identified ISO 19650-1 concepts [3] and
ISO 19650-2 actors [4] as involved. The above steps can thus
be implemented as semantic rules (or constraints) on top of
the McBIM ontology, ensuring the (semi-) automatic check-
ing of the considered processes. The aim is to verify the
compliance with the requirements about a lifecycle phase,
for example, check the compliance with the client require-
ments during the delivery phase.

Implement Explainable Decision-Support

Explainable decision support is one of the main innovations
in the context of this project. The idea is to ease the querying
of the overall knowledge specified in the different federated
ontology modules.
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Table 5 Triples extracted from the OWL file representing the beam from Fig. 15 and listing the knowledge about the instance IfcSensor-

Type_60210

Line Subject Predicate Object

1 inst:IfcSensorType_60210 ifcOWL:globalld_IfcRoot inst:IfcGloballyUniqueld_207

2 inst:IfcSensorType_60210 ifcOWL:hasPropertySets_IfcTypeObject inst:IfcPropertySet_602111

3 inst:IfcSensorType_60210 ifcOWL:hasPropertySets_IfcTypeObject inst:IfcPropertySet_60207

4 inst:IfcSensorType_60210 ifcOWL:hasPropertySets_IfcTypeObject inst:IfcPropertySet_60220

5 inst:IfcSensorType_60210 ifcOWL:name_IfcRoot inst:IfcLabel_208

6 inst:IfcSensorType_60210 ifcOWL:predefinedType_IfcSensorType ifcOWL:TEMPERATURESENSOR
7 inst:IfcSensorType_60210 rdf:type ifcOWL:IfcSensorType

8 inst:IfcSensorType_60210 ifcOWL:relatingType_IfcRelDefinedByType inst:IfcRelDefinedByType_60209

Inst:IfcSensorType_60210

Fig. 15 IfcBeam equipped with three instances of IfcSensor

Based on the modules listed in the previous section, the
ANR McBIM ontology implements Linked Data principles
to align upper-level concepts of the ontology with existing
standard ontologies e.g. ifcOWL4ADD1 [50], SSN/SOSA
[51], SAREF [52], SAREF4BLDG [53], SEAS [62], etc.

Of course, similar decision-support could be imple-
mented by using only ifcOWL, but given the high expres-
sivity of this ontology, queries expressed on top of it have
been proven time-consuming [33]. To further exemplify the
complexity of writing queries for ifcOWL, the following
example shows the SPARQL query for obtaining the data
values from IfcSensor instances. Let us consider the next
IfcBeam element, comprising three instances of IfcSensor
(corresponding to the beam illustrated in Fig. 13).

For a clearer idea of the structure's complexity for
ifcOWL, the table below (see Table 5) lists all triples about
one IfcSensor instance, namely the one identified as IfcSen-
sorType_60210 in Fig. 15. Line 1 references the IFC GUID
instance (but not the GUID's value) and line 6 defines this
as a temperature sensor. Still, the table below (Table 5) only
represents the basic knowledge about this sensor.

The SPARQL listing below (Table 6) allows querying
the minimum data values recorded by all three sensors from
Fig. 15. Results are displayed in Table 7.
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Table6 SPARQL query for minimum data values recorded by the
sensors from Fig. 15

Line  Subject

1 PREFIX ifcowl:<http://www.buildingsmart-tech.org/
ifcOWL/IFC2X3_TCl#>

2 PREFIX express: <https://w3id.org/express#>

3 PREFIX list:<https://w3id.org/list#>

4 SELECT ?sensor (min(?value) as ?minValue)

5 WHERE

6 {

7 ?PropertyV ifcowl:nominal Value_IfcPropertySingleValue 7V
8 7V express:hasDouble ?value

9 ?PropertyV ifcowl:name_IfcProperty ?id

10 7id express:hasString "TemperatureSensorSetPoint"

11 {

12 WHERE

13 {

14 SELECT ?PropertyV ?sensor ?Property

15 WHERE

16 {

17 ?sensor rdf:type ifcowl:IfcSensorType

18 ?sensor ifcowl:hasPropertySets_IfcTypeObject ?Property
19 ?Property ifcowl:hasProperties_IfcPropertySet ?PropertyV
20 }

21 }

22 }

23 GROUP BY ?sensor

Table 7 Results provided to the query in Table 6.

Sensor minValue
inst:IfcSensorType_60235 22.0
inst:IfcSensorType_60236 22.2
inst:IfcSensorType_60210 219



http://www.buildingsmart-tech.org/ifcOWL/IFC2X3_TC1#
http://www.buildingsmart-tech.org/ifcOWL/IFC2X3_TC1#
https://w3id.org/express#
https://w3id.org/list#
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Given the SPARQL query's length and complexity listed
in Table 6, the ANR McBIM ontology's goal is to allow
formulating simpler queries. Using a more straightforward
ontology structure, the ANR McBIM knowledge base only
needs to be populated with instance data from IFC files (e.g.
through ETL-based processes). The queries and the reason-
ing rules are to be implemented on top of the ANR McBIM
knowledge, using concepts and relations from that ontology
solely. Using the semantic links defined to other ontologies
(such as ifcOWL) knowledge can be inferred in terms of
IFC elements.

The ANR McBIM project will seek to implement
advanced knowledge analysis based on semantic rules,
thus enabling reactive and proactive explainable decision-
making. Reactive decision-making algorithms will produce
notifications and alarms to the platform's end-users consid-
ering specified thresholds for parameters of interest. Proac-
tive decision-making (predictive modeling) will help better
interpret real-time construction progress/structural health
monitoring results and provide recommendations on pre-
venting accidents, shortcomings, and deviations or how to
foresee discrepancies at the considered construction stages.
Both reactive and proactive decision-making algorithms will
be integrated into the digital platform to enhance end-users'
visibility on the construction site's progress.

Conclusion

With this paper, we presented the main research issues
existing in the digital building twin field as imposed by the
growing need to digitize construction processes. Approaches
for sensing a building start becoming state-of-the-art. Still,
regarding real-time surveillance and decision-making in con-
struction processes encompassing building lifecycle phases
other than facility management, several standards exist at
the ISO level. In contrast, no standard implementation has
been defined. This article further presented the contributions
envisaged in the ANR McBIM project's context and how
they can push forward existing state-of-the-art approaches.
The concept of "communicating concrete" and its applica-
tions in optimizing the sensor network lifetime have tangible
benefits for building structural health monitoring and build-
ing demolition and concrete recycling. The contributions
regarding reactive and proactive decision-making are also
trail-blazing and enable the level of confidence users to need
for "a reliable basis for decision-making" (as defined by ISO
19650-1:2018 [3]).

Further actions to be considered in this project address
the development and the alignment of the McBIM ontology
with all the ontologies listed in this article's section “Seman-
tic Web Technologies for BIM and IoT”. Once the McBIM
ontology and its related modules are specified, they will have

to be further implemented in the overall system environ-
ment developed by the French SME 360SmartConnect.’
Expert semantic rules will have to be established on top of
this ontology to implement the processes, and compliance-
checking approach envisioned. The overall strategy will be
tested in a real environment, and results presented to pertain-
ing standardization organizations.
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