J. H. Ahn and P. R. Buseck, Hematite nanospheres of possible colloidal origin from a Precambrian banded iron formation, Science, vol.250, pp.111-113, 1990.

M. E. Barley, A. L. Pickard, and P. J. Sylvester, Emplacement of a large igneous province as a possible cause of banded iron formation 2.45 billion years ago, Nature, vol.385, pp.55-58, 1997.

A. Bekker, J. F. Slack, N. Planavsky, B. Krape?, A. Hofmann et al., Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes, Econ. Geol, vol.105, pp.467-508, 2010.

S. A. Brachfeld, S. K. Banerjee, Y. Guyodo, and G. D. Acton, , 2002.

, A 13 200 year history of century to millennial-scale paleoenvironmental change magnetically recorded in the Palmer Deep, western Antarctic Peninsula, Earth Planet. Sci. Lett, vol.194, pp.311-326

P. S. Braterman, A. G. Cairns-smith, and R. W. Sloper, Photo-oxidation of hydrated Fe 2+ ; significance for banded iron formations, Nature, vol.303, pp.163-164, 1983.

L. Carporzen, S. A. Gilder, and R. J. Hart, Origin and implications of two Verwey transitions in the basement rocks of the Vredefort meteorite crater, South Africa. Earth Planet. Sci. Lett, vol.251, pp.305-317, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00148559

L. Carporzen, B. P. Weiss, S. A. Gilder, A. Pommier, and R. J. Hart, Lightning remagnetization of the Vredefort impact crater: no evidence for impact-generated magnetic fields, J. Geophys. Res. Planets, vol.117, p.1007, 2012.

F. H. Chamalaun and C. E. Dempsey, Palaeomagnetism of the Gawler Range Volcanics and implications for the genesis of the middleback hematite orebodies, J. Geol. Soc. Aust, vol.25, pp.255-265, 1978.

P. Cloud, Paleoecological Significance of the Banded Iron-Formation, Econ. Geol, vol.68, pp.1135-1143, 1973.

L. Drab, J. Carlut, A. Hubert-ferrari, P. Martinez, G. Lepoint et al., Paleomagnetic and geochemical record from cores from the Sea of Marmara, Turkey: age constraints and implications of sapropelic deposition on early diagenesis, Mar. Geol, vol.360, pp.40-54, 2015.

D. Dunlop and Ö. Özdemir, Rock Magnetism Fundamentals and Frontiers, p.573, 1997.

W. E. Ewers and R. C. Morris, Studies of the Dales Gorge Member of the Brockman Iron Formation, Western Australia, Econ. Geol, vol.76, pp.1929-1953, 1981.

A. H. Hickman and M. J. Van-kranendonk, Early Earth evolution: evidence from the 3.5-1.8 Ga geological history of the Pilbara region of Western Australia, Episodes, vol.35, p.283, 2012.

J. M. Huberty, H. Konishi, P. R. Heck, J. H. Fournelle, J. W. Valley et al., Silician magnetite from the Dales Gorge Member of the Brockman Iron Formation, Am. Mineral, vol.97, pp.26-37, 2012.

M. Jackson, B. Moskowitz, and J. Bowles, The magnetite Verwey transition, IRM Q, vol.20, pp.1-11, 2011.

C. M. Johnson, B. L. Beard, N. J. Beukes, C. Klein, and J. M. Leary, Ancient geochemical cycling in the Earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton, Contrib. Mineral. Petrol, vol.144, pp.523-547, 2003.

Z. Ka, J. Sabol, J. Stickler, and J. M. Honig, Effect of low-level titanium(IV) doping on the resistivity of magnetite near the Verwey transition, Phys. Rev. B, vol.46, pp.1975-1978, 1992.

A. Kappler, C. Pasquero, K. O. Konhauser, and D. K. Newman, Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria, Geology, vol.33, pp.865-868, 2005.

C. Koeberl, The record of impact processes on the early Earth: a review of the first 2.5 billion years, Geol. Soc. Am. Spec. Pap, vol.405, pp.1-22, 2006.

I. Koehler, K. Konhauser, and A. Kappler, Role of microorganisms in banded iron formations, Geomicrobiology: Molecular and Environmental Perspective, pp.309-324, 2010.

K. Konhauser, D. Newman, and A. Kappler, The potential significance of microbial Fe (III) reduction during deposition of Precambrian banded iron formations, Geobiology, vol.3, pp.167-177, 2005.

K. O. Konhauser, L. Amskold, S. V. Lalonde, N. R. Posth, A. Kappler et al., Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition, Earth Planet. Sci. Lett, vol.258, pp.87-100, 2007.

K. O. Konhauser, T. Hamade, R. Raiswell, R. C. Morris, F. G. Ferris et al., Could bacteria have formed the Precambrian banded iron formations?, Geology, vol.30, pp.1079-1082, 2002.

A. Koz?owski, P. Metcalf, Z. K?kol, and J. M. Honig, Electrical and magnetic properties of Fe3-zAlzO4(z <0.06), Phys. Rev. B, vol.53, pp.15113-15118, 1996.

A. Koz?owski, P. Metcalf, Z. Kakol, and J. M. Honig, Electrical transport and magnetization measurements of Fe3-zAlzO4, z < 0.06, J. Magn. Magn. Mater, pp.415-416, 1996.

J. C. Larrasoaña, A. P. Roberts, J. S. Stoner, C. Richter, and R. Wehausen, A new proxy for bottom-water ventilation in the eastern Mediterranean based on diagenetically controlled magnetic properties of sapropel-bearing sediments, Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.190, pp.221-242, 2003.

Y. Li, K. O. Konhauser, D. R. Cole, and T. J. Phelps, Mineral ecophysiological data provide growing evidence for microbial activity in banded-iron formations, Geology, vol.39, pp.707-710, 2011.

Y. Li, K. O. Konhauser, A. Kappler, and X. Hao, Experimental low-grade alteration of biogenic magnetite indicates microbial involvement in generation of banded iron formations, Earth Planet. Sci. Lett, vol.361, pp.229-237, 2013.

Q. Liu, S. K. Banerjee, M. J. Jackson, F. Chen, Y. Pan et al., Determining the climatic boundary between the Chinese loess and palaeosol: evidence from aeolian coarse-grained magnetite, Geophys. J. Int, vol.156, pp.267-274, 2004.

C. Mang and A. Kontny, Origin of two Verwey transitions in different generations of magnetite from the Chesapeake Bay impact structure, USA, J. Geophys. Res. Solid Earth, vol.118, 2013.

D. M. Martin, Z. X. Li, A. A. Nemchin, and C. M. Powell, A pre-2.2 Ga age for giant hematite ores of the Hamersley Province, Australia? Econ. Geol, vol.93, pp.1084-1090, 1998.

Y. Miyahara, Impurity effects on the transition temperature of magnetite, J. Phys. Soc. Jpn, vol.32, pp.629-634, 1972.

A. H. Morrish, Canted Antiferromagnetism: Hematite, 1994.

B. M. Moskowitz, Micromagnetic study of the influence of crystal defects on coercivity in magnetite, J. Geophys. Res. Solid Earth, vol.98, pp.18011-18026, 1993.

S. G. Müller, B. Krape?, M. E. Barley, and I. R. Fletcher, Giant iron-ore deposits of the Hamersley province related to the breakup of Paleoproterozoic Australia: New insights from in situ SHRIMP dating of baddeleyite from mafic intrusions, Geology, vol.33, pp.577-580, 2005.

A. R. Muxworthy and E. Mcclelland, Review of the low-temperature magnetic properties of magnetite from a rock magnetic perspective, Geophys. J. Int, vol.140, pp.101-114, 2000.

P. Novák, H. ?tìpánková, J. Englich, J. Kohout, and V. A. Brabers, NMR in magnetite below and around the Verwey transition, Phys. Rev. B, vol.61, pp.1256-1260, 2000.

W. O&apos;reilly, Rock and Mineral Magnetism, 1984.

Ö. Özdemir, D. J. Dunlop, and B. M. Moskowitz, The effect of oxidation on the Verwey transition in magnetite, Geophys. Res. Lett, vol.20, pp.1671-1674, 1993.

E. Pecoits, M. L. Smith, D. C. Catling, P. Philippot, A. Kappler et al., Atmospheric hydrogen peroxide and Eoarchean iron formations, Geobiology, vol.13, pp.1-14, 2015.

P. W. Schmidt and D. A. Clark, Palaeomagnetism and magnetic anisotropy of Proterozoic banded-iron formations and iron ores of the Hamersley Basin, Western Australia, Precambrian Res, vol.69, pp.133-155, 1994.

B. M. Simonson, I. Mcdonald, A. Shukolyukov, C. Koeberl, W. U. Reimold et al., Geochemistry of 2.63-2.49 Ga impact spherule layers and implications for stratigraphic correlations and impact processes, Precambrian Res, vol.175, pp.51-76, 2009.

A. V. Smirnov, Grain size dependence of low-temperature remanent magnetization in natural and synthetic magnetite: experimental study, Earth Planets Space, vol.61, pp.119-124, 2009.

D. Stöffler and F. Langenhorst, Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory, Meteoritics, vol.29, pp.155-181, 1994.

I. Sumita, T. Hatakeyama, A. Yoshihara, and Y. Hamano, Paleomagnetism of late Archean rocks of Hamersley basin, Western Australia and the paleointensity at early Proterozoic, Phys. Earth Planet. Inter, vol.128, pp.223-241, 2001.

C. Thomazo, D. L. Pinti, V. Busigny, M. Ader, K. Hashizume et al., Biological activity and the Earth's surface evolution: insights from carbon, sulfur, nitrogen and iron stable isotopes in the rock record, C. R. Palevol, vol.8, pp.665-678, 2009.

L. A. Tompkins and D. R. Cowan, Opaque mineralogy and magnetic properties of selected banded iron-formations, Aust. J. Earth Sci, vol.48, pp.427-437, 2001.

A. Trendall, A revision of the Mount Bruce Supergroup, Geol. Surv. West. Aust. Annu. Rep, pp.63-71, 1978.

A. F. Trendall and J. Blockey, The Iron Formations of the Precambrian Hamersley Group, Western Australia with Special Reference to the Associated Crocidolite, 1970.

A. F. Trendall, W. Compston, D. R. Nelson, J. R. De-laeter, V. C. Bennett et al., SHRIMP zircon ages constraining the depositional chronology of the Hamersley Group, Sedimentology of the Paleoproterozoic Kungarra Formation, vol.51, pp.314-343, 2004.

E. J. Verwey, P. W. Haayman, and F. C. Romeijn, Physical properties and cation arrangement of oxides with spinel Structures II. Electron. Conductivity, J. Chem. Phys, vol.15, pp.181-187, 1947.

K. Yamaguchi, Geochemistry of Archean-Paleoproterozoic Black Shales: The Early Evolution of the Atmosphere, Oceans, and Biosphere. Available online at, 2002.