Contribution to graph-based manifold learning with application to image categorization - Université de Bourgogne Accéder directement au contenu
Thèse Année : 2020

Contribution to graph-based manifold learning with application to image categorization

Contribution à l’apprentissage de représentation de données à base de graphes avec application à la catégorisation d’images

Résumé

Graph-based Manifold Learning algorithms are regarded as a powerful technique for feature extraction and dimensionality reduction in Pattern Recogniton, Computer Vision and Machine Learning fields. These algorithms utilize sample information contained in the item-item similarity and weighted matrix to reveal the intrinstic geometric structure of manifold. It exhibits the low dimensional structure in the high dimensional data. This motivates me to develop Graph-based Manifold Learning techniques on Pattern Recognition, specially, application to image categorization. The experimental datasets of thesis correspond to several categories of public image datasets such as face datasets, indoor and outdoor scene datasets, objects datasets and so on. Several approaches are proposed in this thesis: 1) A novel nonlinear method called Flexible Discriminant graph-based Embedding with feature selection (FDEFS) is proposed. We seek a non-linear and a linear representation of the data that can be suitable for generic learning tasks such as classification and clustering. Besides, a byproduct of the proposed embedding framework is the feature selection of the original features, where the estimated linear transformation matrix can be used for feature ranking and selection. 2) We investigate strategies and related algorithms to develop a joint graph-based embedding and an explicit feature weighting for getting a flexible and inductive nonlinear data representation on manifolds. The proposed criterion explicitly estimates the feature weights together with the projected data and the linear transformation such that data smoothness and large margins are achieved in the projection space. Moreover, this chapter introduces a kernel variant of the model in order to get an inductive nonlinear embedding that is close to a real nonlinear subspace for a good approximation of the embedded data. 3) We propose the graph convolution based semi-supervised Embedding (GCSE). It provides a new perspective to non-linear data embedding research, and makes a link to signal processing on graph methods. The proposed method utilizes and exploits graphs in two ways. First, it deploys data smoothness over graphs. Second, its regression model is built on the joint use of the data and their graph in the sense that the regression model works with convolved data. The convolved data are obtained by feature propagation. 4) A flexible deep learning that can overcome the limitations and weaknesses of single-layer learning models is introduced. We call this strategy an Elastic graph-based embedding with deep architecture which deeply explores the structural information of the data. The resulting framework can be used for semi-supervised and supervised settings. Besides, the resulting optimization problems can be solved efficiently.
Les algorithmes d'apprentissage de représentation de données à base de graphes sont considérés comme une technique puissante pour l'extraction de caractéristiques et la réduction de dimensionnalité dans les domaines de la reconnaissance de formes, la vision par ordinateur et l'apprentissage automatique. Ces algorithmes utilisent les informations contenues dans les similitudes d’échantillons (par paire) et la matrice du graphe pondéré pour révéler la structure géométrique intrinsèque de données. Ces algorithmes sont capables de récupérer une structure de faible dimension à partir de données de dimension élevée. Le travail de cette thèse consiste à développer des techniques d'apprentissage de représentation de données à base de graphes, appliquées à la reconnaissance de formes. Plus précisément, les expérimentations sont conduites sur des bases de données correspondant à plusieurs catégories d'images publiques telles que les bases de visages, les bases de scènes intérieures et extérieures, les bases d’objets, etc. Plusieurs approches sont proposées dans cette thèse : 1) Une nouvelle méthode non linéaire appelée inclusion discriminante flexible basée sur un graphe avec sélection de caractéristiques est proposée. Nous recherchons une représentation non linéaire et linéaire des données pouvant convenir à des tâches d'apprentissage génériques telles que la classification et le regroupement. En outre, un résultat secondaire de la méthode proposée est la sélection de caractéristiques originales, où la matrice de transformation linéaire estimée peut-être utilisée pour le classement et la sélection de caractéristiques. 2) Pour l'obtention d'une représentation non linéaire flexible et inductive des données, nous développons et étudions des stratégies et des algorithmes qui estiment simultanément la représentation de données désirée et une pondération explicite de caractéristiques. Le critère proposé estime explicitement les poids des caractéristiques ainsi que les données projetées et la transformation linéaire de sorte que la régularité des données et de grandes marges soient obtenues dans l'espace de projection. De plus, nous introduisons une variante à base de noyaux du modèle afin d'obtenir une représentation de données non linéaire inductive proche d'un véritable sous-espace non linéaire pour une bonne approximation des données. 3) Un apprentissage profond flexible qui peut surmonter les limites et les faiblesses des modèles d'apprentissage à une seule couche est introduit. Nous appelons cette stratégie une représentation basée sur un graphe élastique avec une architecture profonde qui explore en profondeur les informations structurelles des données. Le cadre résultant peut être utilisé pour les environnements semi-supervisés et supervisés. De plus, les problèmes d'optimisation qui en résultent peuvent être résolus efficacement. 4) Nous proposons une méthode semi-supervisée pour la représentation de données qui exploite la notion de convolution avec graphes. Cette méthode offre une nouvelle perspective de recherche sur la représentation de données non linéaires et établit un lien avec le traitement du signal sur les méthodes à base de graphes. La méthode proposée utilise et exploite les graphes de deux manières. Tout d'abord, il déploie une régularité des données sur les graphes. Deuxièmement, son modèle de régression est construit sur l'utilisation conjointe des données et de leur graphe en ce sens que le modèle de régression fonctionne avec des données convolutées. Ces dernières sont obtenues par propagation de caractéristiques.
Fichier principal
Vignette du fichier
These_ZHU_UTBM.pdf (21.96 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-02980983 , version 1 (27-10-2020)

Identifiants

  • HAL Id : tel-02980983 , version 1

Citer

Ruifeng Zhu. Contribution to graph-based manifold learning with application to image categorization. Other [cs.OH]. Université Bourgogne Franche-Comté; Universidad del País Vasco. Facultad de ciencias, 2020. English. ⟨NNT : 2020UBFCA015⟩. ⟨tel-02980983⟩
229 Consultations
21 Téléchargements

Partager

Gmail Facebook X LinkedIn More