Spatially variant dimensionality reduction for the visualization of multi/hyperspectral images - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2011

Spatially variant dimensionality reduction for the visualization of multi/hyperspectral images

(1, 2) , (1) , (1) , (3)
1
2
3

Résumé

In this paper, we introduce a new approach for color visu- alization of multi/hyperspectral images. Unlike traditional methods, we propose to operate a local analysis instead of considering that all the pixels are part of the same population. It takes a segmentation map as an input and then achieves a dimensionality reduction adaptively inside each class of pixels. Moreover, in order to avoid unappealing discon- tinuities between regions, we propose to make use of a set of distance transform maps to weigh the mapping applied to each pixel with regard to its relative location with classes' centroids. Results on two hyperspec- tral datasets illustrate the efficiency of the proposed method.
Fichier principal
Vignette du fichier
_final_version_ICIAR.pdf (1.41 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00637936 , version 1 (03-11-2011)

Identifiants

Citer

Steven Le Moan, Alamin Mansouri, Yvon Voisin, Jon Hardeberg. Spatially variant dimensionality reduction for the visualization of multi/hyperspectral images. International Conference on Image Analysis and Recognition, Jun 2011, Burnaby, Canada. pp.375-384, ⟨10.1007/978-3-642-21593-3_38⟩. ⟨hal-00637936⟩
142 Consultations
165 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More