Salient Pixels and Dimensionality Reduction for Display of Multi/Hyperspectral Images - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2012

Salient Pixels and Dimensionality Reduction for Display of Multi/Hyperspectral Images

(1, 2) , (1, 2) , (1) , (1) , (2)
1
2

Résumé

Dimensionality Reduction (DR) of spectral images is a common approach to different purposes such as visualization, noise removal or compression. Most methods such as PCA or band selection use either the entire population of pixels or a uniformly sampled subset in order to compute a projection matrix. By doing so, spatial information is not accurately handled and all the objects contained in the scene are given the same emphasis. Nonetheless, it is possible to focus the DR on the separation of specific Objects of Interest (OoI), simply by neglecting all the others. In PCA for instance, instead of using the variance of the scene in each spectral channel, we show that it is more efficient to consider the variance of a small group of pixels representing several OoI, which must be separated by the projection. We propose an efficient method based on saliency to automatically identify OoI and extract only a few relevant pixels to enhance the separation foreground/background in the DR process.
Fichier principal
Vignette du fichier
LeMoan.pdf (645.81 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00719919 , version 1 (22-07-2012)

Identifiants

Citer

Steven Le Moan, Ferdinand Deger, Alamin Mansouri, Yvon Voisin, Jon Yngve Hardeberg. Salient Pixels and Dimensionality Reduction for Display of Multi/Hyperspectral Images. International Conference on Image and Signal Processing, Jun 2012, Agadir, Morocco. pp.9-16, ⟨10.1007/978-3-642-31254-0_2⟩. ⟨hal-00719919⟩
212 Consultations
262 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More