Joining primal/dual subdivision surfaces

Sergey Podkorytov 1 Christian Gentil 1 Dmitry Sokolov 2 Sandrine Lanquetin 1
2 ALICE - Geometry and Lighting
Inria Nancy - Grand Est, LORIA - ALGO - Department of Algorithms, Computation, Image and Geometry
Abstract : In this article we study the problem of constructing an intermediate surface between two other surfaces defined by different iterative construction processes. This problem is formalised with Boundary Controlled Iterated Function System model. The formalism allows us to distinguish between subdivision of the topology and subdivision of the mesh. Although our method can be applied to surfaces with quadrangular topology subdivision, it can be used with any mesh subdivision (primal scheme, dual scheme or other.) Conditions that guarantee continuity of the intermediate surface determine the structure of subdivision matrices. Depending on the nature of the initial surfaces and coefficients of the subdivision matrices we can characterise the differential behaviour at the connection points between the initial surfaces and the intermediate one. Finally we study the differential behaviour of the constructed surface and show the necessary conditions to obtain an almost everywhere differentiable surface.
Type de document :
Article dans une revue
Liste complète des métadonnées
Contributeur : Sandrine Lanquetin <>
Soumis le : mardi 31 mars 2015 - 11:41:15
Dernière modification le : lundi 16 décembre 2019 - 10:58:03



Sergey Podkorytov, Christian Gentil, Dmitry Sokolov, Sandrine Lanquetin. Joining primal/dual subdivision surfaces. Mathematical Methods for Curves and Surfaces, Springer Berlin Heidelberg, 2014, volume 8177 of Lecture Notes in Computer Science, pp.403-424. ⟨10.1007/978-3-642-54382-1_23⟩. ⟨hal-01137721⟩



Consultations de la notice