Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

A sensor-data-based denoising framework for hyperspectral images

Abstract : Many denoising approaches extend image processing to a hyperspectral cube structure, but do not take into account a sensor model nor the format of the recording. We propose a denoising framework for hyperspectral images that uses sensor data to convert an acquisition to a representation facilitating the noise-estimation, namely the photon-corrected image. This photon corrected image format accounts for the most common noise contributions and is spatially proportional to spectral radiance values. The subsequent denoising is based on an extended variational denoising model, which is suited for a Poisson distributed noise. A spatially and spectrally adaptive total variation regularisation term accounts the structural proposition of a hyperspectral image cube. We evaluate the approach on a synthetic dataset that guarantees a noise-free ground truth, and the best results are achieved when the dark current is taken into account.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01217266
Contributeur : Alamin Mansouri <>
Soumis le : lundi 19 octobre 2015 - 11:42:22
Dernière modification le : mardi 6 octobre 2020 - 16:30:48

Lien texte intégral

Identifiants

Citation

Ferdinand Deger, Alamin Mansouri, Marius Pedersen, Jon Yngve Hardeberg, Yvon Voisin. A sensor-data-based denoising framework for hyperspectral images. Optics Express, Optical Society of America - OSA Publishing, 2015, 23 (38), pp.1938. ⟨10.1364/OE.23.001938⟩. ⟨hal-01217266⟩

Partager

Métriques

Consultations de la notice

381