Accéder directement au contenu Accéder directement à la navigation
Nouvelle interface
Communication dans un congrès

Classification of Melanoma Lesions Using Sparse Coded Features and Random Forests

Abstract : Malignant melanoma is the most dangerous type of skin cancer, yet it is the most treatable kind of cancer, conditioned by its early diagnosis which is a challenging task for clinicians and dermatologists. In this regard, CAD systems based on machine learning and image processing techniques are developed to differentiate melanoma lesions from benign and dysplastic nevi using dermoscopic images. Generally, these frameworks are composed of sequential processes: pre-processing, segmentation, and classification. This architecture faces mainly two challenges: (i) each process is complex with the need to tune a set of parameters, and is specific to a given dataset; (ii) the performance of each process depends on the previous one, and the errors are accumulated throughout the framework. In this paper, we propose a framework for melanoma classification based on sparse coding which does not rely on any pre-processing or lesion segmentation. Our framework uses Random Forests classifier and sparse representation of three features: SIFT, Hue and Opponent angle histograms, and RGB intensities. The experiments are carried out on the public PH 2 dataset using a 10-fold cross-validation. The results show that SIFT sparse-coded feature achieves the highest performance with sensitivity and specificity of 100% and 90.3% respectively, with a dictionary size of 800 atoms and a sparsity level of 2. Furthermore, the descriptor based on RGB intensities achieves similar results with sensitivity and specificity of 100% and 71.3%, respectively for a smaller dictionary size of 100 atoms. In conclusion, dictionary learning techniques encode strong structures of dermoscopic images and provide discriminant descriptors.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger
Contributeur : Guillaume Lemaitre Connectez-vous pour contacter le contributeur
Soumis le : mardi 5 janvier 2016 - 14:32:34
Dernière modification le : vendredi 5 août 2022 - 14:54:00
Archivage à long terme le : : jeudi 7 avril 2016 - 15:23:54


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01250955, version 1


Mojdeh Rastgoo, Guillaume Lemaître, Olivier Morel, Johan Massich, Rafael Garcia, et al.. Classification of Melanoma Lesions Using Sparse Coded Features and Random Forests. SPIE Medical Imaging, Feb 2016, San Diego, United States. ⟨hal-01250955⟩



Consultations de la notice


Téléchargements de fichiers