An anomaly detection approach for the identification of DME patients using spectral domain optical coherence tomography images

Abstract : This paper proposes a method for automatic classification of spectral domain OCT data for the identification of patients with retinal diseases such as Diabetic Macular Edema (DME). We address this issue as an anomaly detection problem and propose a method that not only allows the classification of the OCT volume, but also allows the identification of the individual diseased B-scans inside the volume. Our approach is based on modeling the appearance of normal OCT images with a Gaussian Mixture Model (GMM) and detecting abnormal OCT images as outliers. The classification of an OCT volume is based on the number of detected outliers. Experimental results with two different datasets show that the proposed method achieves a sensitivity and a specificity of 80% and 93% on the first dataset, and 100% and 80% on the second one. Moreover, the experiments show that the proposed method achieves better classification performance than other recently published works.
Type de document :
Article dans une revue
Computer Methods and Programs in Biomedicine, Elsevier, 2017, 139, pp.109 - 117. 〈10.1016/j.cmpb.2016.11.001〉
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01398244
Contributeur : Guillaume Lemaitre <>
Soumis le : jeudi 17 novembre 2016 - 00:24:36
Dernière modification le : mardi 22 novembre 2016 - 01:01:23
Document(s) archivé(s) le : jeudi 16 mars 2017 - 18:46:52

Fichier

CMPB_oct_V2(1).pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Désiré Sidibé, Shrinivasan Sankar, Guillaume Lemaître, Mojdeh Rastgoo, Joan Massich, et al.. An anomaly detection approach for the identification of DME patients using spectral domain optical coherence tomography images. Computer Methods and Programs in Biomedicine, Elsevier, 2017, 139, pp.109 - 117. 〈10.1016/j.cmpb.2016.11.001〉. 〈hal-01398244〉

Partager

Métriques

Consultations de la notice

129

Téléchargements de fichiers

38