Toward a Classification of Quasirational Solutions of the Nonlinear Schrodinger Equation

Abstract : Based on a representation in terms of determinants of the order 2N, we attempt to classify quasirational solutions of the one-dimensional focusing nonlinear Schrodinger equation and also formulate several conjectures about the structure of the solutions. These solutions can be written as a product of a t-dependent exponential times a quotient of two N(N+ 1)th degree polynomials in x and t depending on 2N-2 parameters. It is remarkable that if all parameters are equal to zero in this representation, then we recover the P-N breathers.
Type de document :
Article dans une revue
Theoretical and Mathematical Physics, 2016, 189 (1), pp. 1440-1449 〈http://link.springer.com/article/10.1134%2FS0040577916100044〉. 〈10.1134/S0040577916100044 〉
Liste complète des métadonnées

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01410258
Contributeur : Imb - Université de Bourgogne <>
Soumis le : mardi 6 décembre 2016 - 15:26:05
Dernière modification le : mercredi 7 décembre 2016 - 01:01:42

Identifiants

Collections

Citation

Pierre Gaillard. Toward a Classification of Quasirational Solutions of the Nonlinear Schrodinger Equation. Theoretical and Mathematical Physics, 2016, 189 (1), pp. 1440-1449 〈http://link.springer.com/article/10.1134%2FS0040577916100044〉. 〈10.1134/S0040577916100044 〉. 〈hal-01410258〉

Partager

Métriques

Consultations de la notice

66