A spectral-like decomposition for transitive Anosov flows in dimension three

Abstract : Given a (transitive or non-transitive) Anosov vector field $X$ on a closed three dimensional manifold $M$, one may try to decompose $(M, X)$ by cutting $M$ along tori and Klein bottles transverse to $X$. We prove that one can find a finite collection $\{S_1,\dots ,S_n\}$ of pairwise disjoint, pairwise non-parallel tori and Klein bottles transverse to $X$, such that the maximal invariant sets $\Lambda _1,\dots ,\Lambda _m$ of the connected components $V_1,\dots ,V_m$ of $M-(S_1\cup \dots \cup S_n)$ satisfy the following properties : - each $\Lambda _i$ is a compact invariant locally maximal transitive set for $X$; - the collection $\{\Lambda _1,\dots ,\Lambda _m\}$ is canonically attached to the pair $(M, X)$ (i.e. it can be defined independently of the collection of tori and Klein bottles $\{S_1,\dots ,S_n\}$; - the $\Lambda _i$'s are the smallest possible: for every (possibly infinite) collection $\{S_i\}_{i\in I}$ of tori and Klein bottles transverse to $X$, the $\Lambda _i$'s are contained in the maximal invariant set of $M-\cup _i S_i$. To a certain extent, the sets $\Lambda _1,\dots ,\Lambda _m$ are analogs (for Anosov vector field in dimension 3) of the basic pieces which appear in the spectral decomposition of a non-transitive axiom $A$ ector field. Then we discuss the uniqueness of such a decomposition: we prove that the pieces of the decomposition $V_1,\dots ,V_m$, equipped with the restriction of the Anosov vector field $X$, are “almost unique up to topological equivalence”.
Type de document :
Article dans une revue
Mathematische Zeitschrift, Springer, 2016, 282 (3-4), pp.889 - 912. 〈10.1007/s00209-015-1569-6〉
Liste complète des métadonnées

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01413416
Contributeur : Imb - Université de Bourgogne <>
Soumis le : vendredi 9 décembre 2016 - 17:16:58
Dernière modification le : samedi 24 mars 2018 - 01:05:25

Lien texte intégral

Identifiants

Citation

F. Beguin, Christian Bonatti, B. Yu. A spectral-like decomposition for transitive Anosov flows in dimension three. Mathematische Zeitschrift, Springer, 2016, 282 (3-4), pp.889 - 912. 〈10.1007/s00209-015-1569-6〉. 〈hal-01413416〉

Partager

Métriques

Consultations de la notice

96