Multidomain spectral method for Schrödinger equations

Abstract : A multidomain spectral method with compactified exterior domains combined with stable second and fourth order time integrators is presented for Schrödinger equations. The numerical approach allows high precision numerical studies of solutions on the whole real line. At examples for the linear and cubic nonlinear Schrödinger equation, this code is compared to transparent boundary conditions and perfectly matched layers approaches. The code can deal with asymptotically non vanishing solutions as the Peregrine breather being discussed as a model for rogue waves. It is shown that the Peregrine breather can be numerically propagated with essentially machine precision, and that localized perturbations of this solution can be studied.
Liste complète des métadonnées
Contributeur : Imb - Université de Bourgogne <>
Soumis le : vendredi 9 décembre 2016 - 17:24:35
Dernière modification le : vendredi 8 juin 2018 - 14:50:07

Lien texte intégral



Mira Birem, Christian Klein. Multidomain spectral method for Schrödinger equations. Advances in Computational Mathematics, Springer Verlag, 2016, 42 (2), pp.395-423. ⟨10.1007/s10444-015-9429-9⟩. ⟨hal-01413426⟩



Consultations de la notice