Comparison of region of interest segmentation methods for video-based heart rate measurements

Abstract : Conventional contact photoplethysmography (PPG) sensors are not suitable in situations of skin damage or when unconstrained movement is required. As a consequence, remote photoplethysmography (rPPG) has recently emerged because it provides remote physiological measurements without expensive hardware and improves comfort for long-term monitoring. RPPG estimation methods use the spatially averaged RGB values of pixels in a Region Of Interest (ROI) to generate a temporal RGB signal. The selection of ROI is a critical first step to obtain reliable pulse signals and must contain as many skin pixels as possible with a low percentage of non-skin pixels. In this paper, we experimentally compare seven ROI segmentation methods in the perspective of heart rate (HR) measurements with dedicated metrics. The algorithms are compared using our in-house database UBFC-RPPG, comprising of 53 videos specifically geared towards rPPG analysis.
Type de document :
Communication dans un congrès
IEEE International Conference on Bioinformatics and Bioengineering, Oct 2018, Taichung, Taiwan
Liste complète des métadonnées

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01939138
Contributeur : Yannick Benezeth <>
Soumis le : jeudi 29 novembre 2018 - 11:19:29
Dernière modification le : dimanche 9 décembre 2018 - 01:18:27

Fichier

IEEE_BIBE_2018_camera_ready_pa...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01939138, version 1

Collections

Citation

Peixi Li, Yannick Benezeth, Keisuke Nakamura, Randy Gomez, Chao Li, et al.. Comparison of region of interest segmentation methods for video-based heart rate measurements. IEEE International Conference on Bioinformatics and Bioengineering, Oct 2018, Taichung, Taiwan. 〈hal-01939138〉

Partager

Métriques

Consultations de la notice

5

Téléchargements de fichiers

2