On complete intersections in varieties with finite-dimensional motive

Abstract : Let X be a complete intersection inside a variety M with finite-dimensional motive and for which the Lefschetz-type conjecture B (M) holds. We show how conditions on the niveau filtration on the homology of X influence directly the niveau on the level of Chow groups. This leads to a generalization of Voisin's result. The latter states that if M has trivial Chow groups and if X has non-trivial variable cohomology parametrized by c-dimensional algebraic cycles, then the cycle class maps A(k)(X) -> H-2k (X) are injective for k < c. We give variants involving group actions, which lead to several new examples with finite-dimensional Chow motives.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-02174842
Contributeur : Imb - Université de Bourgogne <>
Soumis le : vendredi 5 juillet 2019 - 12:15:56
Dernière modification le : vendredi 11 octobre 2019 - 09:04:02

Lien texte intégral

Identifiants

Citation

Robert Laterveer, Jan Nagel, Chris Peters. On complete intersections in varieties with finite-dimensional motive. Quarterly Journal of Mathematics, Oxford University Press (OUP), 2019, 70 (1), pp.71-104. ⟨10.1093/qmath/hay038⟩. ⟨hal-02174842⟩

Partager

Métriques

Consultations de la notice

40