Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

What's in my Room? Object Recognition on Indoor Panoramic Images

Abstract : In the last few years, there has been a growing interest in taking advantage of the 360° panoramic images potential, while managing the new challenges they imply. While several tasks have been improved thanks to the contextual information these images offer, object recognition in indoor scenes still remains a challenging problem that has not been deeply investigated. This paper provides an object recognitionsystem that performs object detection and semantic segmentation tasks by using a deep learning model adapted to match the nature of equirectangular images. From these results, instance segmentation masks are recovered, refined and transformed into 3D bounding boxes that are placed into the 3D model ofthe room. Quantitative and qualitative results support that our method outperforms the state of the art by a large margin and show a complete understand
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger
Contributeur : Le2i - Université de Bourgogne Connectez-vous pour contacter le contributeur
Soumis le : lundi 20 juillet 2020 - 15:23:27
Dernière modification le : mercredi 22 juillet 2020 - 14:33:28
Archivage à long terme le : : mardi 1 décembre 2020 - 01:42:23


Fichiers produits par l'(les) auteur(s)




Julia Guerrero-Viu, Clara Fernandez-Labrador, Cédric Demonceaux, Jose J. Guerrero. What's in my Room? Object Recognition on Indoor Panoramic Images. IEEE International Conference on Robotics and Automation (ICRA 2020), May 2020, Paris, France. ⟨hal-02470600⟩



Les métriques sont temporairement indisponibles